精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)在其图像上存在不同的两点A(x1 , y1),B(x2 , y2),其坐标满足条件:|x1x2+y1y2|﹣ 的最大值为0,则称f(x)为“柯西函数”, 则下列函数:
①f(x)=x+ (x>0);
②f(x)=lnx(0<x<3);
③f(x)=2sinx;
④f(x)=
其中为“柯西函数”的个数为(
A.1
B.2
C.3
D.4

【答案】C
【解析】解:由柯西不等式得:对任意实数x1 , y1 , x2 , y2 , |x1x2+y1y2|﹣ ≤0恒成立(当且仅当存在实数k,使得x1=kx2 , y1=ky2取等号),若函数f(x)在其图像上存在不同的两点A(x1 , y1),B(x2 , y2),其坐标满足条件:|x1x2+y1y2|﹣ 的最大值为0,则函数f(x)在其图像上存在不同的两点A(x1 , y1),B(x2 , y2),使得 共线,即存在点A、B与点O共线; 对于①,f(x)=x+ (x>0)存在;
对于②,f(x)=lnx (0<x<3)不存在;
对于③,f(x)=2sinx存在;
对于④,f(x)= 存在.
故选:C.
【考点精析】解答此题的关键在于理解函数的最值及其几何意义的相关知识,掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数的定义域为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖,求下列问题:(1)求顾客抽奖1次能获奖的概率(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为 X ,求 X 的分布列和数学期望.
(1)(1)求顾客抽奖1次能获奖的概率
(2)(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为 , 求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上的最大值为4,最小值为1

1)求实数的值;

2)记,若上是单调函数,求实数的取值范围;

3)对于函数,用12将区间任意划分成个小区间,若存在常数,使得和式对任意的划分恒成立,则称函数上的有界变差函数.记,试判断函数是否为在上的有界变差函数?若是,求的最小值;若不是,请说明理由.

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中 中,已知曲线 经过点 ,其参数方程为 为参数),以原点 为极点, 轴的正半轴为极轴建立极坐标系.
(1)求曲线 的极坐标方程;
(2)若直线 于点 ,且 ,求证: 为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三棱柱ABC﹣A1B1C1底边长为2,E,F分别为BB1 , AB的中点. (I)已知M为线段B1A1上的点,且B1A1=4B1M,求证:EM∥面A1FC;
(II)若二面角E﹣A1C﹣F所成角的余弦值为 ,求AA1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对于定义在上的函数,其图象是连续不断的,且存在常数使得对任意实数都成立,则称是一个“特征函数”.下列结论中正确的个数为(  )

是常数函数中唯一的“特征函数”;

不是“特征函数”;

③“特征函数”至少有一个零点;

是一个“特征函数”.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧面ADD1A1和侧面CDD1C1都是矩形,BC∥AD,△ABD是边长为2的正三角形,E,F分别为AD,A1D1的中点.
(Ⅰ)求证:DD1⊥平面ABCD;
(Ⅱ)求证:平面A1BE⊥平面ADD1A1
(Ⅲ)若CF∥平面A1BE,求棱BC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知几何体ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,FC∥EA,AB=AD=EA=1,CD=CF=2.
(Ⅰ)求证:平面EBD⊥平面BCF;
(Ⅱ)求点B到平面ECD的距离.

查看答案和解析>>

同步练习册答案