精英家教网 > 高中数学 > 题目详情

【题目】如图1所示,在矩形中,中点,将沿折起,使点到点处,且平面平面,如图2所示.

1)求证:

2)在棱上取点,使平面平面,求平面所成锐二面角的余弦值.

【答案】1)证明见解析(2)余弦值为.

【解析】

(1)在矩形,连接于点,则由可推出,因此有,故在翻折后的四棱锥中,,据此推出平面,从而有;

(2)以点为原点,方向为轴的正方向建立空间直角坐标系,再过点于点,由平面平面可推出平面,即有,结合,可知平面,,,再结合可求出,最后再利用空间向量法求二面角的余弦值即可.

(1)在矩形,连接于点,

由题知,,,

所以,,

,所以,

所以,,

故在翻折后的四棱锥中,,

,所以平面,

平面,所以;

(2)如图所示,以点为原点,方向为轴的正方向建立空间直角坐标系,

在矩,经计算可得,

因此,

过点于点,

因为平面平面,平面平面,

所以平面,所以,

又由(1),,

所以平面,

所以,即有,

因为点,,,

解得,,

设平面的一个法向量为,

,

,

,,

又平面的一个法向量为,

所以,

所以平面所成锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数)

1)求的单调区间;

2)已知关于的方程有三个实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的极值;

2)若不等式恒成立,求的最小值(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:

AQI指数值

0~50

51~100

101~150

151~200

201~300

>300

空气质量

轻度污染

中度污染

重度污染

严重污染

下图是某市10月1日—20日AQI指数变化趋势:

下列叙述错误的是

A. 这20天中AQI指数值的中位数略高于100

B. 这20天中的中度污染及以上的天数占

C. 该市10月的前半个月的空气质量越来越好

D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(文科)已知函数.

(1)若,求曲线在点处的切线方程;

(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解高一年级学生学习数学的状态,从期中考试成绩中随机抽取50名学生的数学成绩,按成绩分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

(1)由频率分布直方图,估计这50名学生数学成绩的中位数和平均数(保留到0.01);

(2)该校高一年级共有1000名学生,若本次考试成绩90分以上(含90分)为优秀等次,则根据频率分布直方图估计该校高一学生数学成绩达到优秀等次的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:极坐标与参数方程]

在直角坐标系中,曲线的参数方程为是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若射线 与曲线交于两点,与曲线交于两点,求取最大值时的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过点作直线分别与椭圆交于点,若的周长为8.

1)求椭圆的方程;

2)求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,平面中点,下列说法中

1

2)记二面角的平面角分别为;

3)记的面积分别为;

4,

正确说法的个数为( )

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案