精英家教网 > 高中数学 > 题目详情

【题目】设集合A={x|y=log2(x﹣1)},B={y|y=﹣x2+2x﹣2,x∈R}
(1)求集合A,B;
(2)若集合C={x|2x+a<0},且满足B∪C=C,求实数a的取值范围.

【答案】
(1)解:A={x|y=log2(x﹣1)}={x|(x﹣1)>0}=(1,+∞),

B={y|y=﹣x2+2x﹣2,x∈R}={y|y=﹣(x﹣1)2﹣1,x∈R}=(﹣∞,﹣1]


(2)解:集合C={x|2x+a<0}={x|x<﹣ },

∵B∪C=C,

∴BC,

,∴实数a的取值范围(﹣∞,2)


【解析】(1)集合A即函数y=log2(x﹣1)定义域,B即y=﹣x2+2x﹣2,x∈R的值域.(2)先求出集合C,由B∪C=C 可得BC,∴﹣ >﹣1,解不等式得到实数a的取值范围.
【考点精析】掌握集合的并集运算和函数的值域是解答本题的根本,需要知道并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知F1、F2分别是双曲线 =1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(2x+3﹣x2).
(1)求f(x)的定义域及单调区间;
(2)求f(x)的最大值,并求出取得最大值时x的值;
(3)设函数g(x)=log4[(a+2)x+4],若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,D为边BC上一点,AD=6,BD=3,DC=2.

(1)若ADBC,求∠BAC的大小;

(2)若∠ABC,求△ADC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a为实常数,y=f(x)是定义在R上的奇函数,当x<0时 ,若f(x)≥a+1对一切 x≥0成立,则a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴交于两点,点为圆上异于的任意一点,圆在点处的切线与圆在点处的切线分别交于,直线交于点,设点的轨迹为曲线.

(1)求曲线的方程;

(2)曲线轴正半轴交点为,则曲线是否存在直角顶点为的内接等腰直角三角形,若存在,求出所有满足条件的的两条直角边所在直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f′(x)是偶函数f(x)(x∈(﹣∞,0)∪(0,+∞)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣1,0)∪(0,1)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆)与直线 ),四点 中有三个点在椭圆上,剩余一个点在直线上.

(Ⅰ)求椭圆的方程;

(Ⅱ)若动点在直线上,过作直线交椭圆 两点,使得,再过作直线,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组,第一组[155,160),第二组[160,165),…,第八组[190.195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组人数为4.

(1)求第七组的频数.
(2)估计该校的800名男生身高的中位数在上述八组中的哪一组以及身高在180cm以上(含180cm)的人数.

查看答案和解析>>

同步练习册答案