精英家教网 > 高中数学 > 题目详情
16.设偶函数f(x)满足f(x)=log4(x+2)-1(x≥0),则{x|f(x-2)>0}等于(  )
A.{x|x<-2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<-2或x>2}

分析 x≥0,函数单调递增,f(2)=0,利用函数是偶函数,f(x-2)>0,得到|x-2|>2,即可得出结论.

解答 解:∵函数f(x)=log4(x+2)-1(x≥0)为定义域上的递增函数,f(2)=0,
又函数是偶函数,f(x-2)>0,
∴|x-2|>2,
∴x-2<-2,或x-2>2,
∴x<0或x>4,
故选B.

点评 本题考查偶函数的性质,考查函数的单调性,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数{an}满足an+1+1=$\frac{{a}_{n}+1}{2{a}_{n}+3}$,且a1=1,则数列{$\frac{2}{{a}_{n}+1}$}的前20项和为780.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.$({\begin{array}{l}1&2\\ 3&{-1}\end{array}})({\begin{array}{l}4\\ 2\end{array}})$=$(\begin{array}{l}{8}\\{10}\end{array})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.抛物线y2=-8x中,以(-1,1)为中点的弦所在的直线方程为4x+y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数$y=3sin({2x-\frac{π}{4}})$的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线ax+by+1=0(a、b>1)过圆x2+y2+8x+2y+1=0的圆心,则$\frac{1}{a}+\frac{4}{b}$的最小值为(  )
A.8B.12C.16D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),0≤α<β≤2π,设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ:
①若|m$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$+m$\overrightarrow{b}$|,(m<0),则$\overrightarrow{a}•\overrightarrow{b}$的最小值$\frac{1}{2}$;
②若$\overrightarrow{a}$+$\overrightarrow{c}$=$\overrightarrow{b}$且$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{a}$,则$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{0}$;
③若α+β=$\frac{π}{6}$,记f(α)=2$\overrightarrow{a}$•$\overrightarrow{b}$,则将f(α)的图象保持纵坐标不变,横坐标向左平移$\frac{π}{6}$个单位后得到的函数是偶函数;
④已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,θ=$\frac{2π}{3}$,点C在以O为圆心的圆弧AB上运动,且满足$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,x,y∈R,则x+y∈[1,2].
上述正确命题的序号为④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某县城高中为了走读学生的上下学交通安全,从学生的身心健康角度出发,决定禁止学生骑电瓶车到校,改骑自行车或坐公交车.在禁骑之前,对骑电瓶车的学生家长通过致函、家长会等方式进行了问卷调查.从家长的支持禁骑或不支持禁骑、家长的学历(以父、母中较高的学历为准)等数据中随机地抽取了100份进行统计如表,学历分为高中以上(含高中毕业)和高中以下(不含高中毕业).
 高中以下高中以上合计
支持226890
不支持8210
合计3070100
(1)判断能否有99.9%的把握认为“不支持禁骑”与“学历”有关.
(2)从抽取出来的不支持学校禁骑决定的学生家长(每位学生只派一位家长参与)中任取三位,取到的家长学历为“高中以上”的人数记为随机变量X,求X的分布列及期望EX.
附:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≤k)0.0100.0050.001
k6.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$|{\overrightarrow a}|=4,|{\overrightarrow b}|=3,({2\overrightarrow a-3\overrightarrow b})({2\overrightarrow a+\overrightarrow b})=61$.
(1)求$|{\overrightarrow a+\overrightarrow b}|$;
(2)若$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{BC}=\overrightarrow b$,求向量$\overrightarrow{BA}$在$\overrightarrow{BC}$上方向上的投影;
(3)已知$\overrightarrow a-\overrightarrow b$与$t\overrightarrow a+\overrightarrow b$成钝角,求实数t的取值范围.

查看答案和解析>>

同步练习册答案