精英家教网 > 高中数学 > 题目详情
已知函数
(1)当时,若,求函数f(x)的值;
(2)当时,求函数的值域;
(3)把函数y=f(x)的图象按向量平移得到函数g(x)的图象,若函数g(x)是偶函数,写出最小的向量的坐标.
【答案】分析:(1)利用同角三角函数的基本关系 由sinx求出cosx,从而求得f(x)的值.
(2)根据x的范围,求得角x-的范围,可得sin(x-)的范围,利用两角差的正弦公式化简f(x)的解析式,
利用二次函数的性质求的h(x)的值域.
(3)根据向量平移得到g(x)的解析式 ,要使g(x)是偶函数,即要
 求得a的解析式,通过|的解析式可得当k=-1时,最小.
解答:解:(1)∵,∴
==
(2)∵,∴
=
(3)设,所以
要使g(x)是偶函数,即要,即
当k=-1时,最小,此时,b=0,即向量的坐标为
点评:本题考查同角三角函数的基本关系,两角差的正弦公式,正弦函数的定义域和值域,判断g(x)是偶函数 的条件,
是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数

(1)当时,若,试求

(2)若函数在区间上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年海南省高考压轴卷文科数学试卷(解析版) 题型:解答题

(本小题满分10分)选修4-5:不等式选讲

已知函数

(1)当时,求函数的定义域;

(2)若关于的不等式的解集是,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二下学期期中文科数学试卷(解析版) 题型:解答题

(本小题12分)已知函数

(1)当时,判断的单调性;

(2)若在其定义域内为增函数,求正实数的取值范围;

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市宝山区高三上学期期末质量监测数学 题型:解答题

已知函数

    (1)当时,求满足的取值范围;

    (2)若的定义域为R,又是奇函数,求的解析式,判断其在R上的单调性并加以证明.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年深圳市高三第一次调研考试数学理卷 题型:解答题

((本小题满分14分)

已知函数

(1)当时,如果函数仅有一个零点,求实数的取值范围;

(2)当时,试比较的大小;

(3)求证:).

 

查看答案和解析>>

同步练习册答案