精英家教网 > 高中数学 > 题目详情

已知.
(1)若a=0时,求函数在点(1,)处的切线方程;
(2)若函数在[1,2]上是减函数,求实数a的取值范围;
(3)令是否存在实数a,当是自然对数的底)时,函数 的最小值是3,若存在,求出a的值;若不存在,说明理由.

(1)
(2)
(3)存在实数使得有最小值3

解析试题分析:解:
(1)当时,切点
切线斜率
因此,所求切线方程为 
(2)由已知,当时,恒成立
恒成立
 则递减。
从而
(3)假设存在实数a,使得有最小值3

时,恒成立,
上递减,
时,恒成立。
上递减,
时, 
满足条件。
综上,存在实数使得有最小值3
考点:导数的运用
点评:主要是考查了导数在研究函数单调性中的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设二次函数在区间上的最大值、最小值分别是,集合
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,记,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=
(Ⅰ)求函数y的最小正周期;
(Ⅱ)求函数y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-2alnx(a>0)
(I)求函数f(x)的单调区间和最小值.
(II)若方程f(x)=2ax有唯一解,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1) 试判断函数上单调性并证明你的结论;
(2) 若恒成立, 求整数的最大值;
(3) 求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中,区间
(Ⅰ)求的长度(注:区间的长度定义为);
(Ⅱ)给定常数,当时,求长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是幂函数且在上为减函数,函数在区间上的最大值为2,试求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f (x)=x3(1-a)x2-3ax+1,a>0.
(Ⅰ) 证明:对于正数a,存在正数p,使得当x∈[0,p]时,有-1≤f (x)≤1;
(Ⅱ) 设(Ⅰ)中的p的最大值为g(a),求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知yf(x)是定义在R上的奇函数,当x≤0时,f(x)=2xx2.
(1)求x>0时,f(x)的解析式;
(2)若关于x的方程f(x)=2a2a有三个不同的解,求a的取值范围.

查看答案和解析>>

同步练习册答案