精英家教网 > 高中数学 > 题目详情
1.若sin$\frac{α}{2}$=$\frac{1}{2}$,则cosα等于 (  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.±$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

分析 根据sin2α+cos2α=1,即可求出.

解答 解:∵sin$\frac{α}{2}$=$\frac{1}{2}$,
∴cosα=±$\sqrt{1-si{n}^{2}α}$=±$\sqrt{1-\frac{1}{4}}$=±$\frac{\sqrt{3}}{2}$,
故选:D.

点评 本题考查了同角的三角函数的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.sinα+cosα=$\frac{2}{3}$,α∈(0,π),则sinα-cosα为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知成等比数列的三个数的积为64,且这三个数的和为14,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.证明:${∫}_{x}^{1}$$\frac{dx}{1+{x}^{2}}$=${∫}_{1}^{\frac{1}{x}}$$\frac{dx}{1+{x}^{2}}$(x>0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设若a≠b,a>0,b>0,且alg(ax)=blg(bx),则(ab)lg(abx)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.集合的表示法有描述法和列举法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆的极坐标方程为:ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+6=0,以极点为原点,极轴为x轴的正半轴建立直角坐标系.
(1)将圆的极坐标方程化为直角坐标方程;
(2)若点P(x,y)在该圆上,求x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设△ABC中的内角A,B,C所对的边分别为a,b,c,已知a=2,(a+b)(sinA-sinB)=(c-b)sinC.
(Ⅰ)若b=2,求c边的长;
(Ⅱ)求△ABC面积的最大值,并指明此时三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在底面半径为2,母线长为4的圆锥中内有一个高为$\sqrt{3}$的圆柱.
(1)求:圆柱表面积的最大值;
(2)在(1)的条件下,求该圆柱外接球的表面积和体积.

查看答案和解析>>

同步练习册答案