精英家教网 > 高中数学 > 题目详情
对于每个非零自然数n,抛物线y=x2-
2n+1
n2+n
x+
1
n2+n
与x轴交于An、Bn两点,以AnBn表示这两点间的距离,则A1B1+A2B2+…+A2014B2014的值是(  )
A、
2014
2013
B、
2013
2014
C、
2015
2014
D、
2014
2015
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线的定义、性质与方程
分析:由已知条件推导出方程x2-
2n+1
n2+n
x+
1
n2+n
=(x-
1
n
)(x-
1
n+1
)=0的两个解是An、Bn两点,从而得到AnBn=
1
n(n+1)
=
1
n
-
1
n+1
,由此利用裂项求和法能求出A1B1+A2B2+…+A2014B2014的值.
解答: 解:抛物线y=x2-
2n+1
n2+n
x+
1
n2+n
与x轴交点,
就是方程x2-
2n+1
n2+n
x+
1
n2+n
=(x-
1
n
)(x-
1
n+1
)=0的两个解,
∵抛物线y=x2-
2n+1
n2+n
x+
1
n2+n
与x轴交于An、Bn两点,
∴x1=An=
1
n

x2=Bn=
1
n+1

∴AnBn=
1
n(n+1)
=
1
n
-
1
n+1

∴A1B1+A2B2+…+A2014B2014
=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
2014
-
1
2015

=1-
1
2015

=
2014
2015

故选:D.
点评:本题考查距离之和的求法,是中档题,解题时要注意裂项求和法和等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x,y满足
4x+3y≤20
x-3y≤2
x,y∈N+
,求z=7x+5y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

记等差数列{an}的前n项和为Sn,已知a2+a4=6,S4=10.则a10=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin2x-
3
(cos2x-sin2x)
的图象为C,如下结论中正确的是
 

①图象C关于直线x=
11
12
π对称;       
②图象C关于点(
3
,0)对称;
③函数f(x)在区间(-
π
12
12
)内是增函数;④由y=2sin2x的图角向右平移
π
3
个单位长度可以得到图象C.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两组各有三名同学,他们在一次测验中的成绩的茎叶图如图所示,如果分别从甲、乙两组中各随机挑选一名同学,则这两名同学的成绩之差的绝对值不超过3的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若两曲线在交点P处的切线互相垂直,则称呼两曲线在点P处正交.设椭圆
x2
4
+
y2
b2
=1(0<b<2)与双曲线
x2
2
-y2=1在交点处正交,则椭圆
x2
4
+
y2
b2
=1的离心率为(  )
A、
1
2
B、
2
2
C、
3
2
D、
3
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=
2
i-1
,则图中表示z的共轭复数的点是(  )
A、AB、BC、CD、D

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b3=9,a5+b2=11
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ只限文班做)求数列{
1
anan+1
}
的前n项和Tn
(Ⅱ只限理班做)求数列{
an
bn
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(0,2),抛物线C:y2=2px(p>0)的焦点为F,线段PF与抛物线C的交点为M,过M作抛物线准线的垂线,垂足为Q.若∠PQF=90°,则p=
 

查看答案和解析>>

同步练习册答案