精英家教网 > 高中数学 > 题目详情
函数f(x)=sin(ωx+φ)(x∈R)(ω>0,|φ|<
π
2
)的部分图象如图所示,如果x1,x2∈(-
π
6
π
3
),且f(x1)=f(x2),则f(x1+x2)等于(  )
A、
1
2
B、
3
2
C、
2
2
D、1
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:计算题,三角函数的图像与性质
分析:通过函数的图象求出函数的周期,利用函数的图象经过的特殊点求出函数的初相,得到函数的解析式,利用函数的图象与函数的对称性求出f(x1+x2)即可.
解答: 解:由图观察可知,T=2×(
π
3
+
π
6
)=π,
∴ω=
T
=2,
∵函数的图象经过(-
π
6
,0),
∴可得:0=sin(-
π
3
+φ),
∵|φ|<
π
2

∴可解得:φ=
π
3

∴f(x)=sin(2x+
π
3
),x1+x2=2×
π
12
=
π
6

∴f(x1+x2)=sin
3
=
3
2

故选:B.
点评:本题考查三角函数的解析式的求法,函数的图象的应用,函数的对称性,考查计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知将函数y=sinx的图象上的所有点的横坐标伸长到原来的3倍(纵坐标不变),再向左平移
π
4
个单位,可得到函数y=f(x)的图象,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex-1,x≥0
-x2-2x,x<0
,若函数g(x)=f(x)-|x-a|恰有两个零点,则实数a的取值集合为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={y|y=3-x2,x∈R},N={x|y=
(
1
2
)x-1
},则M∩(∁UN)=(  )
A、(-∞,0)B、[0,3)
C、(0,3]D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC三内角A,B,C所对的边分别为a,b,c,重心为G(三角形中三边中线的交点),若2a
GA
+3b
GB
=3c
CG
,则cosB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,圆ρ2-4ρcosθ+3=0上的动点P到直线θ=
π
3
(ρ∈R)的距离最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(3,
3
)与圆x2+y2-4x+3=0相切的直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈[0,1],函数f(x)=x2-ln(x+
1
2
),g(x)=x3-3a2x-4a.
(1)求函数f(x)的单调区间和值域;
(2)设a≤-1,若?x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若a=
3
,A=
π
3
,则
a+b+c
sinA+sinB+sinC
=
 

查看答案和解析>>

同步练习册答案