精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx3,gx)=alnx2xaR.

1)讨论gx)的单调性;

2)是否存在实数a,使不等式fxgx)恒成立?如果存在,求出a的值;如果不存在,请说明理由.

【答案】1)见解析;(2)存在,

【解析】

1)先对函数求导,然后结合导数与单调性关系对a进行分类讨论即可求解;

2)要使不等式fxgx)恒成立即xexaelnx+2ex3e≥0,构造函数ux)=xexaelnx+2ex3e,结合函数的性质及导数即可求解.

解:(1,x0,

i)当a≤0时,gx)<0,函数在(0,+∞)上单调递减,

ii)当a0时,令,令,得

所以函数gx)在(0,)上单调递增,在()上单调递减,

2)要使不等式fxgx)恒成立即恒成立,

xexaelnx+2ex3e≥0,令ux)=xexaelnx+2ex3e,则u1)=0,

要使得原不等式成立,则ux)在x1处取得极小值,

因为,

所以u1)=0可得a4,

检验a4时,ux,

vx)=xx+1ex+2ex4e,且v1)=0,

显然vx)在(0,+∞)上单调递增,

x∈(0,1)时,vx)<0,即ux)<0,ux)单调递减,当x∈(1,+∞)时,vx)>0,即ux)>0,ux)单调递增,

ux)的最小值u1)=0,满足题意,

综上,a4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了提高生产线的运行效率,工厂对生产线的设备进行了技术改造.为了对比技术改造后的效果,采集了生产线的技术改造前后各20次连续正常运行的时间长度(单位:天)数据,并绘制了如茎叶图:

1)(i)设所采集的40个连续正常运行时间的中位数m,并将连续正常运行时间超过m和不超过m的次数填入下面的列联表:

超过

不超过

改造前

改造后

ii)根据(i)中的列联表,能否有99%的把握认为生产线技术改造前后的连续正常运行时间有差异?

附:

0.050

0.010

0.001

3.841

6.635

10.828

2)工厂的生产线的运行需要进行维护,工厂对生产线的生产维护费用包括正常维护费、保障维护费两种.对生产线设定维护周期为T天(即从开工运行到第kT进行维护.生产线在一个生产周期内设置几个维护周期,每个维护周期相互独立.在一个维护周期内,若生产线能连续运行,则不会产生保障维护费;若生产线不能连续运行,则产生保障维护费.经测算,正常维护费为0.5万元/次;保障维护费第一次为0.2万元/周期,此后每增加一次则保障维护费增加0.2万元.现制定生产线一个生产周期(以120天计)内的维护方案:.以生产线在技术改造后一个维护周期内能连续正常运行的频率作为概率,求一个生产周期内生产维护费的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】英国统计学家EH.辛普森1951年提出了著名的辛普森悖论,下面这个案例可以让我们感受到这个悖论.有甲乙两名法官,他们都在民事庭和行政庭主持审理案件,他们审理的部分案件被提出上诉.记录这些被上述案件的终审结果如下表所示(单位:件):

法官甲

法官乙

终审结果

民事庭

行政庭

合计

终审结果

民事庭

行政庭

合计

维持

29

100

129

维持

90

20

110

推翻

3

18

21

推翻

10

5

15

合计

32

118

150

合计

100

25

125

记甲法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,记乙法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,则下面说法正确的是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种值的表达式纷纷出现,使得值的计算精度也迅速增加.华理斯在1655年求出一个公式:,根据该公式绘制出了估计圆周率的近似值的程序框图,如下图所示,执行该程序框图,已知输出的,若判断框内填入的条件为,则正整数的最小值是

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体的六个面的中心可构成一个正八面体,现从正方体内部任取一个点,则该点落在这个正八面体内部的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间的为优等品;指标在区间的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,各自随机抽取100件作为样本进行检测,测试指标结果的频数分布表如下:

甲种生产方式:

指标区间

频数

5

15

20

30

15

15

乙种生产方式:

指标区间

频数

5

15

20

30

20

10

(1)在用甲种方式生产的产品中,按合格品与优等品用分层抽样方式,随机抽出5件产品,①求这5件产品中,优等品和合格品各多少件;②再从这5件产品中,随机抽出2件,求这2件中恰有1件是优等品的概率;

(2)所加工生产的农产品,若是优等品每件可售55元,若是合格品每件可售25元.甲种生产方式每生产一件产品的成本为15元,乙种生产方式每生产一件产品的成本为20元.用样本估计总体比较在甲、乙两种不同生产方式下,该扶贫单位要选择哪种生产方式来帮助该扶贫村来脱贫?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为为参数).在以坐标原点为极点,轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线的极坐标方程是.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)设点.若直与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,且N的中点.

1)求证:平面

2)求平面与平面所成锐二面角的余弦值

3)在线段上是否存在一点M,使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)若存在x0∈Rf(x0)x0成立,则称x0f(x)的不动点.已知f(x)ax2(b1)xb1(a≠0)

(1)a1b=-2时,求函数f(x)的不动点;

(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;

(3)(2)的条件下,若yf(x)图象上AB两点的横坐标是函数f(x)的不动点,且AB两点关于直线ykx对称,求b的最小值.

查看答案和解析>>

同步练习册答案