精英家教网 > 高中数学 > 题目详情
2.已知全集U=R,集合A={x|x2-3x≤0},B={x|a≤x≤a+2,a∈R}
(1)当a=1时,求A∩B;
(2)当集合A,B满足B?A时,求实数a的取值范围.

分析 (1)由x2-3x≤0,解出可得A.当a=1时,B=[1,3].即可得出A∩B.
(2)由B?A,可得$\left\{\begin{array}{l}{a≥0}\\{a+2≤3}\end{array}\right.$,解出即可得出.

解答 解:(1)由x2-3x≤0,解得0≤x≤3,∴A=[0,3].
当a=1时,B=[1,3].
∴A∩B=[1,3].
(2)∵B?A,
∴$\left\{\begin{array}{l}{a≥0}\\{a+2≤3}\end{array}\right.$,解得0≤a≤1,
∴实数a的取值范围是[0,1].

点评 本题考查了一元二次不等式的解法、集合之间的关系及其运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.函数f(x)=ax3+bx+c的图象关于原点对称且过点(1,1),(2,26).
(1)求f(x)的解析式;
(2)求函数f(x)的单调区间;
(3)设P为函数f(x)(x∈(0,+∞))图象上一点,求点P到直线y=9x-10的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(文科)如图,已知抛物线C:y=$\frac{1}{4}$x2,点P(x0,y0)为抛物线上一点,y0∈[3,5],圆F方程为x2+(y-1)2=1,过点P作圆F的两条切线PA,PB分别交x轴于点M,N,切点分别为A,B.
①求四边形PAFB面积的最大值.
②求线段MN长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC中,cosB=$\frac{4\sqrt{3}}{7}$,BC=3,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,∠ADC=$\frac{π}{3}$.
(1)求AD的长;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.由曲线y=x2和直线x=0,x=2,y=t2,t∈[0,2]围成的封闭图形的面积记为S.
(1)用t表示S.
(2)求S的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义在R上的函数y=f(x),对任意不等的实数x1,x2都有[f(x1)-f(x2)](x1-x2)<0成立,又函数y=f(x-1)的图象关于点(1,0)对称,若不等式f(x2-2x)+f(2y-y2)≤0成立,则当1≤x≤4时,$\frac{y}{x}$的取值范围是(-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.集合A={0,2,a},B={1,16},若A∪B={0,1,2,4,16},则a的值为(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥AD且BC=$\frac{1}{2}$AD,BE∥AF且BE=$\frac{1}{2}$AF,G,H分别为FA,FD的中点.证明:四边形BCHG是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知命题:$\left.\begin{array}{l}{m?α}\\{l∥m}\\{()}\end{array}\right\}$⇒l∥α,在“(  )”处补上一个条件使其构成真命题(其中l,m是直线,α是平面),这个条件是l?α.

查看答案和解析>>

同步练习册答案