精英家教网 > 高中数学 > 题目详情

已知关于x的方程|x|=ax+1有一个负根而且没有正根,则实数a的取值范围是


  1. A.
    {a|a≥1}
  2. B.
    {a|a≥1或a≤-1}
  3. C.
    {a|a>1或a<-1}
  4. D.
    {a|0<a<1}
A
分析:法一:由已知方程|x|=ax+1有一个负根而且没有正根,可得出x<0,去掉绝对值符号即可解题.
法二:构造函数y=|x|,y=ax+1,在坐标系内作出函数图象,通过数形结合求出a的范围.
解答:法一:如果x<0,|x|=-x,
-x=ax+1,x=-<0,a+1>0,
a>-1;
如果x>0,|x|=x,x=ax+1,x=>0,1-a>0,
a<1.
因为没有正根,
所以a<1不成立.
所以a≥1.
法二:令y=|x|,y=ax+1,在坐标系内作出函数图象,
方程|x|=ax+1有一个负根,
但没有正根,由图象可知
a≥1
故选A.
点评:本题考查了含绝对值符号的一元一次方程、根的存在性及根的个数判断,难度适中,法一关键是根据已知条件列出关于a的不等式.法二关键是数形结合.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、已知关于x的方程|x|=ax+1有一个负根,但没有正根,则实数a的取值范围是
a≥1

查看答案和解析>>

科目:高中数学 来源: 题型:

12、已知关于x的方程|x|-ax-1=0有一正一负根,则实数a的取值范围是
(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程
|x|x+3
=kx3
有三个不同的实数解,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程|x|=ax+1有一个负根而且没有正根,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程(a+2)x2-2ax+a=0有两个不相等的实数根x1和x2,并且抛物线y=x2-(2a+1)x+2a-5于x轴的两个交点分别位于点(2,0)的两旁.
(1)求实数a的取值范围;
(2)当|x1|+|x2|=2
2
时,求a的值.

查看答案和解析>>

同步练习册答案