精英家教网 > 高中数学 > 题目详情
已知函数f(x),g(x)满足f(5)=5,f′(5)=3,g(5)=4,g′(5)=1,则函数y=
f(x)+2
g(x)
的图象在x=5处的切线方程为
 
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:求出y′,因为函数在x=5处的切线斜率等于y′|x=5,把x=5代入y′中即可求出切线的斜率,然后把x=5代入y中求出切点的纵坐标,得到切点坐标,根据切点坐标和斜率写出切线方程.
解答: 解:函数y=
f(x)+2
g(x)
的导数y′=
f′(x)g(x)-(f(x)+2)g′(x)
g2(x)

函数y=
f(x)+2
g(x)
在x=5处的切线斜率k=y′|x=5=
f′(5)g(5)-g′(5)(f(5)+2)
g2(5)

=
3×4-1×(5+2)
16
=
5
16

且x=5时,y=
f(5)+2
g(5)
=
5+2
4
=
7
4
,所以切点坐标为(5,
7
4
),
则切线方程为:y-
7
4
=
5
16
(x-5),
化简得5x-16y+3=0.
故答案为:5x-16y+3=0.
点评:此题考查学生会利用求导法则求函数的导函数,会利用导数求曲线上过某点切线方程的斜率,会求直线方程,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}、{bn}都是公差为1的等差数列,其首项分别为a1、b1,且a1+b1=6,a1,b1∈N,设cn=a bn(n∈N+),求数列{cn}的前20项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x.
(1)求f(m-1)+1的值;
(2)若x∈[-2,a],求f(x)的值域;
(3)若存在实数t,当x∈[1,m],f(x+t)≤3x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足
a
b
,|
a
+
b
|=t|
a
|,若
a
+
b
a
-
b
的夹角为
3
,则t的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求过点(2,0)且与曲线y=x3相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清.
(1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;
(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?

查看答案和解析>>

科目:高中数学 来源: 题型:

求数列a,2a2,3a3,4a4,…,nan,…(a为常数,且a≠1,a≠0)的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 f(x)=
x2-4x+3,x≤0
-x2-2x+3,x>0
,不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sin(2x+φ)在(
π
4
π
3
)上单调递增,其中φ∈(π,2π),则φ的取值范围为(  )
A、[
7
6
π,2π)
B、(π,
11
6
π]
C、[
7
6
π,
11
6
π]
D、[
11
6
π,2π)

查看答案和解析>>

同步练习册答案