精英家教网 > 高中数学 > 题目详情

【题目】如图放置的边长为1的正方形 沿 轴滚动(向右为顺时针,向左为逆时针).设顶点 的轨迹方程是,则关于的最小正周期在其两个相邻零点间的图像与x轴所围区域的面积S的正确结论是( )

A. B.

C. D.

【答案】A

【解析】

从某一个顶点(比如落在轴上的时候开始计算到下一次点落在轴上这个过程中四个顶点依次落在了轴上而每两个顶点间距离为正方形的边长,因此该函数的周期为.下面考查点的运动轨迹,不妨考查正方形向右滚动 点从轴上开始运动的时候,首先是围绕点运动个圆,该圆半径为,然后以点为中心滚动到点落地其间是以为半径旋转,再以为圆心,旋转,这时候以为半径,因此最终构成图象如下:

所以两个相邻零点间的图象与轴所围成区域的面积故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 点(n, )在直线y= x+ 上. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn= ,求数列{bn}的前n项和为Tn , 并求使不等式Tn 对一切n∈N*都成立的最大正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数.

(1)求 的值;

(2)若方程 有且只有一个根,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x|,g(x)=lg(ax2﹣4x+1),若对任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),则实数a的取值范围是(  )
A.(﹣∞,4]
B.(0,4]
C.(﹣4,0]
D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,如果存在实数使得,那么称的生成函数.

(1) 下面给出两组函数, 是否分别为的生成函数?并说明理由;

第一组:

第二组:

(2) 设 ,生成函数.若不等式上有解,求实数的取值范围;

(3) 设 ,取,生成函数图像的最低点坐标为.若对于任意正实数,且,试问是否存在最大的常数,使恒成立?如果存在,求出这个的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,集合M={x|f(x)=0}={x1 , x2 , x3 , x4 , x5}N* , 设c1≥c2≥c3 , 则c1﹣c3=(
A.6
B.8
C.2
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1的离心率为 ,焦距为2,右焦点为F,过点F的直线交椭圆于A、B两点.
(1)求椭圆C的方程;
(2)在x轴上是否存在定点M,使得 为定值?若存在,求出定值和定点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是二次函数,顶点为(﹣1,﹣4),且与x轴的交点为(1,0).
(1)求出f(x)的解析式;
(2)求y=f(x)在区间[﹣2,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,具有线性相关关系,下表为抽样试验的结果:

转速x(转/秒)

8

10

12

14

16

每小时生产有缺点的零件数y(件)

5

7

8

9

11

(1)如果y对x有线性相关关系,求回归方程;
(2)若实际生产中,允许每小时生产的产品中有缺点的零件最多有10个,那么机器的运转速度应控制在设么范围内?

查看答案和解析>>

同步练习册答案