精英家教网 > 高中数学 > 题目详情
9.盒中装有11个乒乓球,其中6个新球,5个旧球,不放回地依次取出2个球,在第一次取出新球的条件下,第二次也取到新球的概率为(  )
A.$\frac{3}{5}$B.$\frac{1}{6}$C.$\frac{1}{2}$D.$\frac{5}{9}$

分析 在第一次取出新球的条件下,盒子中还有10个球,这10个球中有5个新球和5个旧球,再利用古典概率及其计算公式求得第二次也取到新球的概率

解答 解:在第一次取出新球的条件下,盒子中还有10个球,这10个球中有5个新球和5个旧球,
故第二次也取到新球的概率为$\frac{1}{2}$,
故选C.

点评 本题主要考查古典概率及其计算公式,体现了转化的数学思想,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.如图的程序框图表示算法的运行结果是(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知抛物线x2=8y上的点P到抛物线的焦点距离为5,则点P的纵坐标为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知A,B两地相距100km.按交通法规规定:A,B两地之间的公路上车速要求不低于60km/h且不高于100km/h.假设汽车以xkm/h速度行驶时,每小时耗油量为($4+\frac{1}{128000}{x^3}-\frac{1}{80}x$)升,汽油的价格是6元/升,司机每小时的工资是24元.
(1)若汽车从A地以64km/h的速度匀速行驶到B地,需耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从A地到B地的总费用最低?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示椭圆的一个必要不充分条件是(  )
A.m∈(-5,3)B.m∈(-3,5)C.m∈(-3,1)∪(1,5)D.m∈(-5,1)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,若m=3,则输出的结果为(  )
A.3B.27C.81D.729

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}是各项均为正数的等差数列,首项a1=1,其前n项和为Sn;数列{bn}是等比数列,首项b1=2,且b2S2=16,b3S3=72.
(1)求数列{an},{bn}的通项公式;
(2)若${c_n}=\frac{S_n}{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(3,-1),离心率e=$\frac{\sqrt{6}}{3}$.
(1)求椭圆C的方程;
(2)分别过椭圆C的四个顶点作坐标轴的垂线,围成如图所示的矩形,A、B是所围成的矩形在x轴上方的两个顶点.若P、Q是椭圆C上两个动点,直线0P、OQ与椭圆的另一交点分别为P1、Q1,且直线OP、0Q的斜率之积等于直线OA、0B的斜率之积,试问四边形PQP1Q1的面积是否为定值?若为定值,求出其值;若不为定值,说明理由(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)求证:1+$\frac{1}{{3}^{2}}$+$\frac{1}{{5}^{2}}$+…+$\frac{1}{(2n-1)^{2}}$>$\frac{7}{6}$-$\frac{1}{2(2n-1)}$(n≥2)
(2)求证:$\frac{1}{4}$+$\frac{1}{16}$+$\frac{1}{36}$+…+$\frac{1}{4{n}^{2}}$<$\frac{1}{2}$-$\frac{1}{4n}$
(3)求证:$\frac{1}{2}$+$\frac{1•3}{2•4}$+$\frac{1•3•5}{2•4•6}$+…+$\frac{1•3•5…(2n-1)}{2•4•6…2n}$<$\sqrt{2n+1}$-1
(4)求证:2($\sqrt{n+1}$-1)<1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<$\sqrt{2}$($\sqrt{2n+1}$-1)

查看答案和解析>>

同步练习册答案