精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-ax.
(I)当a=3时,求f(x)在[-2,2]上的最大值和最小值;
(II)已知函数g(x)=ax(|x+a|-1),记h(x)=f(x)-g(x)(x∈[0,2]),当函数h(x)的最大值为0时,求实数a的取值范围.
分析:(I)先求出函数f(x)的导函数,然后求出f'(x)>0求出函数的单调性,从而求出函数的最值;
(II)h(x)=f(x)-g(x)=x3-ax|x+a|(x∈[0,2]),讨论a的正负,以及a与2的大小求出函数f(x)的最大值,当a≥2时,必有h'(x)≤0,则h(x)在[0,2]上递减,则最大值为h(0)=0,满足题设,当0<a<2时求出最大值,使之等于0,求出a即可.
解答:解:(I)∵f(x)=x3-ax,∴f'(x)=3x2-3=3(x-1)(x+1)
∵f'(x)>0?x>1或x<-1,且x∈[-2,2]∴函数f(x)在[-2,-1]上递增,[-1,1]上递减,[1,2]上递增
∵f(-2)=f(1)=-2,∴fmin(x)=-2,∵f(0)=-2,而f(2)=2,∴fmax(x)=2
(II)h(x)=f(x)-g(x)=x3-ax|x+a|(x∈[0,2]),
(1)当a≤0时,h(x)=x3-ax|x+a|≥0
∵h(0)=0,且0<x≤2时h(x)>0显然不符合题意
(2)当a>0时,∵x≥0,h(x)=x3-ax2-a2x≥0
∴h'(x)=3x2-2ax-a2=(x-a)(3x+a)
∵x≥0,h'(x)>0?x>a
①当a≥2时,必有h'(x)≤0,∴h(x)在[0,2]上递减,则最大值为h(0)=0,满足题设
②当0<a<2时,∵h'(x)>0?x>a∴h(x)在[0,a]上递减,在[a,2]上递增
则h(x)max=max(h(0),h(2))
∵h(0)=0只需h(2)≤0,即8-4a-2a2≤0
5
-1≤a<2

∴实数a的取值范围[
5
-1,+∞)
点评:本题主要考查了函数的最值及其几何意义,以及分类讨论的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案