精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈[0,\frac{1}{2})}\\{3{x}^{2},x∈[\frac{1}{2},1]}\end{array}\right.$,若存在x1<x2,使得f(x1)=f(x2),则x1的取值范围为[$\frac{1}{4}$,$\frac{1}{2}$).

分析 画出分段函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈[0,\frac{1}{2})}\\{3{x}^{2},x∈[\frac{1}{2},1]}\end{array}\right.$的图象,数形结合,可得满足条件的x1的取值范围.

解答 解:分段函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈[0,\frac{1}{2})}\\{3{x}^{2},x∈[\frac{1}{2},1]}\end{array}\right.$的图象如下图所示:

令x+$\frac{1}{2}=\frac{3}{4}$,则x=$\frac{1}{4}$,
若存在x1<x2,使得f(x1)=f(x2),则x1的取值范围为[$\frac{1}{4}$,$\frac{1}{2}$),
故答案为:[$\frac{1}{4}$,$\frac{1}{2}$)

点评 本题考查的知识点是分段函数的应用,函数的值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求值:$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{{a}^{\frac{2}{3}}+2\root{3}{ab}+4{b}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)•$\root{3}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y-2\sqrt{2}-2≤0}\\{x-ky+2k≥0}\end{array}\right.$表示的是一个对称的四边形区域,则k=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知x1,x2是方程2x2+5x-4=0的两个实数根,求$\frac{{x}_{2}}{{x}_{1}}$+$\frac{{x}_{1}}{{x}_{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设二次函数f(x)满足f(2+x)=f(2-x),对于x∈R恒成立,且f(x)=0的两个实数根的平方和为10,f(x)的图象过点(0,3).求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.写出所有满足{1,3}∪A={1,2,3,4,5}的集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,a,b,c分别是角A,B,C所对边的长,S是△ABC的面积,已知S=a2-(b-c)2,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在[-3,5]上的函数y=f(x),当x∈[-3,1]时f(x)=x2+2x,且其图象关于直线x=1对称,则当x∈[1,5]时,f(x)=x2-6x+8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)在定义域内的最小正周期为T.
(1)若f(x+1)=-f(x),则T=2;
(2)若f(x+1)=$\frac{1}{f(x)}$,则T=2;
(3)若f(x+2)=f(x+1),则T=1.

查看答案和解析>>

同步练习册答案