精英家教网 > 高中数学 > 题目详情
已知直线l1:x+3y-3m2=0和直线l2:2x+y-m2-5m=0相交于点P(m∈R).
(1)用m表示直线l1与l2的交点P的坐标;
(2)当m为何值时,点P到直线x+y+3=0的距离最短?并求出最短距离.
考点:点到直线的距离公式,中点坐标公式
专题:直线与圆
分析:(1)解方程组
x+3y-3m2=0
2x+y-m2-5m=0
,能求出直线l1与l2的交点P的坐标.
(2)设点P到直线x+y+3=0的距离为d,d=
|3m+m2-m+3|
2
,由此利用配方法能求出点P到直线x+y+3=0的距离最短时的P点坐标和最短距离.
解答: 解:(1)解方程组
x+3y-3m2=0
2x+y-m2-5m=0

得x=3m,y=m2-m,
∴直线l1与l2的交点P的坐标为(3m,m2-m).
(2)设点P到直线x+y+3=0的距离为d,
d=
|3m+m2-m+3|
2

=
|m2+2m+3|
2

=
|(m+1)2+2|
2

=
(m+1)2+2
2

∴当m=-1时,即P点坐标为(-3,2)时,
点P到直线x+y+3=0的距离最短,最短距离为
2
点评:本题考查两直线交点坐标的求法,考查点到直线的最短距离及此时点的坐标的求法,是基础题,解题时要认真审题,注意配方法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,且4sin2
B+C
2
-cos2A=
7
2

(Ⅰ)求角A的大小
(Ⅱ)求sinBsinC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x-
π
3
)+2sin2x-1,
(1)求f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别为三个内角A,B,C的对边,且a=2,c=2
3
,f(
C
2
)=
1
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足,点(n,an)(n∈N*)均在函数y=6x-1的图象上,数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b2=8,b1+b9=34
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
3
(an-4)(2bn-3)
(n∈N*),Tn为数列{cn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=cos4x-2sinx•cosx-sin4x
(1)求f(x)的图象的对称轴;
(2)当x∈[0,
π
2
]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的棱长为1.
(1)在空间中与点A距离为
1
3
的所有点构成曲面S,曲面S将正方体ABCD-A1B1C1D1分为两部分,若设这两部分的体积分别为V1,V2(其中V1>V2),求的
V1
V2
值;
(2)在正方体表面上与点A的距离为
2
3
3
的点形成一条空间曲线,求这条曲线的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,满足Sn=n2+2n.等比数列{bn}满足:b1=3,b4=81.
(1)求证:数列{an}为等差数列;
(2)若Tn=
a1
b1
+
a2
b2
+
a3
b3
+…+
an
bn
,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥P-ABC的四个顶点均在半径为3的球面上,且PA、PB、PC两两互相垂直,则三棱锥P-ABC的侧面积的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=
3sinx+1
sinx+2
,则函数的值域为
 

查看答案和解析>>

同步练习册答案