精英家教网 > 高中数学 > 题目详情
已知一袋有2个白球和4个黑球。
(1)采用不放回地从袋中摸球(每次摸一球),4次摸球,求恰好摸到2个黑球的概率;
(2)采用有放回从袋中摸球(每次摸一球),4次摸球,令X表示摸到黑球次数,
求X的分布列和期望.
(1)、
(2)
本试题主要是考查了古典概型概率和随机变量的分布列以及数学期望值的求解,二项分布的运用。
(1)因为一袋有2个白球和4个黑球。采用不放回地从袋中摸球(每次摸一球),4次摸球,求恰好摸到2个黑球直接利用古典概型概率公式计算得到。
(2)由于是由放回的摸球,因此是独立重复试验,运用其公式可以解得。
解:(1)、
(2)、X可取0,1,2,3,4
一次摸球为黑球的概率
,

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

有一种游戏规则如下:口袋里共装有4个红球和4个黄球,一次摸出4个,若颜色都相同,则
得100分;若有3个球颜色相同,另一个不同,则得50分,其他情况不得分. 小张摸一次得分的期望是_____ .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

QQ先生的鱼缸中有7条鱼,其中6条青鱼和1条黑鱼,计划从当天开始,每天中午从该鱼缸中抓出1条鱼(每条鱼被抓到的概率相同)并吃掉.若黑鱼未被抓出,则它每晚要吃掉1条青鱼(规定青鱼不吃鱼).
(Ⅰ)求这7条鱼中至少有6条被QQ先生吃掉的概率;
(Ⅱ)以表示这7条鱼中被QQ先生吃掉的鱼的条数,求的分布列及其数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在第9届校园文化艺术节棋类比赛项目报名过程中,我校高二(2)班共有16名男生和14名女生预报名参加,调查发现,男、女选手中分别有10人和6人会围棋.
(I)根据以上数据完成以下22列联表:
 
会围棋
不会围棋
总计

 
 
 

 
 
 
总计
 
 
30
并回答能否在犯错的概率不超过0.10的前提下认为性别与会围棋有关?
参考公式:其中n=a+b+c+d
参考数据:

0.40
0.25
0.10
0.010

0.708
1.323
2.706
6.635
(Ⅱ)若从会围棋的选手中随机抽取3人成立该班围棋代表队,则该代表队中既有男又
有女的概率是多少?
(Ⅲ)若从14名女棋手中随机抽取2人参加棋类比赛,记会围棋的人数为,求的期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

袋中装着标有数字1,2,3,4,5的小球各2个,现从袋中任意取出3个小球,假设每个小球被取出的可能性都相等.
(Ⅰ)求取出的3个小球上的数字分别为1,2,3的概率;
(Ⅱ)求取出的3个小球上的数字恰有2个相同的概率;
(Ⅲ)用X表示取出的3个小球上的最大数字,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.某渔船要对下月是否出海做出决策,如出海后遇到好天气,可得收益6000元,如出海后天气变坏将损失8000元,若不出海,无论天气如何都将承担1000元损失费,据气象部门的预测下月好天的概率为0.6,天气变坏的概率为0.4,则该渔船应选择_____________(填“出海”或“不出海”).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为.
(Ⅰ)求直方图中的值;
(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,
请估计学校600名新生中有多少名学生可以申请住宿;
(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间
少于20分钟的人数记为,求的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
    视觉        
视觉记忆能力
偏低
中等
偏高
超常
听觉
记忆
能力
偏低
0
7
5
1
中等
1
8
3

偏高
2

0
1
超常
0
2
1
1
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为
(I)试确定的值;
(II)从40人中任意抽取3人,求其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率;
(III)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为,求随机变量的数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1L2两条路线(如图),L1路线上有A1A2A3三个路口,各路口遇到红灯的概率均为L2路线上有B1B2两个路口,各路口遇到红灯的概率依次为

(1)若走L1路线,求最多遇到1次红灯的概率;
(2)若走L2路线,求遇到红灯次数的数学期望;
(3)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.

查看答案和解析>>

同步练习册答案