精英家教网 > 高中数学 > 题目详情
若等差数列{an}的前三项为x-1,x+1,2x+3,则这数列的通项公式为(  )
分析:由等差数列{an}的前三项为x-1,x+1,2x+3,知(x+1)-(x-1)=(2x+3)-(x+1),解得x=0.故a1=-1,d=2,由此能求出这数列的通项公式.
解答:解:∵等差数列{an}的前三项为x-1,x+1,2x+3,
∴(x+1)-(x-1)=(2x+3)-(x+1),
解得x=0.
∴a1=-1,d=2,
an=-1+(n-1)×2=2n-3.
故选B.
点评:本题考查等差数列的通项公式,解题时要认真审题,注意等差数列的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、若等差数列{an}的前5项和S5=30,且a2=7,则a7=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若等差数列{an}的公差为d,前n项的和为Sn,则数列{
Sn
n
}
为等差数列,公差为
d
2
.类似地,若各项均为正数的等比数列{bn}的公比为q,前n项的积为Tn,则数列{
nTn
}
为等比数列,公比为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin2x,若等差数列{an}的第5项的值为f′(
π6
),则a1a2+a2a9+a9a8+a8a1=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)若等差数列{an}的前n项和为Sn(n∈N*),若a2:a3=5:2,则S3:S5=
3:2
3:2

查看答案和解析>>

科目:高中数学 来源: 题型:

若等差数列{an}的项数m为奇数,且a1+a3+a5+…+am=52,a2+a4+…+am-1=39则m=(  )

查看答案和解析>>

同步练习册答案