精英家教网 > 高中数学 > 题目详情
设点分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为.
(I)求椭圆的方程;
(II)设直线(直线不重合),若均与椭圆相切,试探究在轴上是否存在定点,使点的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.
(1);(2)定点存在,其坐标为.

试题分析:本题考查椭圆的标准方程以及直线与椭圆的位置关系等数学知识,考查分析问题解决问题的能力和计算能力,考查函数思想和分类讨论思想.第一问,设出点坐标,用代数法解题,得到向量的坐标,利用向量的数量积得出表达式,求出最小值,即可解出的值,即确定了的值,写出椭圆的方程;第二问,由于直线与椭圆相切,所以直线与椭圆方程联立消参,得出方程的判别式等于0,得出,同理,得出,所以,因为两直线不重合,所以,若存在点,利用点到直线的距离公式得到距离之积为1的表达式,解出的值,由于的值存在,所以存在点,写出坐标即可.
试题解析:(I)设,则有,

最小值为,
∴椭圆的方程为                                  4分
(II)把的方程代入椭圆方程得
∵直线与椭圆相切,∴,化简得
同理可得:
,若,则重合,不合题意,
,即                           8分
设在轴上存在点,点到直线的距离之积为1,则
,即,
代入并去绝对值整理,或者 
前式显然不恒成立;而要使得后式对任意的恒成立
,解得;
综上所述,满足题意的定点存在,其坐标为 .          12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线x2-y2=2若直线n的斜率为2 ,直线n与双曲线相交于A、B两点,线段AB的中点为P,
(1)求点P的坐标(x,y)满足的方程(不要求写出变量的取值范围);
(2)过双曲线的左焦点F1,作倾斜角为的直线m交双曲线于M、N两点,期中,F2是双曲线的右焦点,求△F2MN的面积S关于倾斜角的表达式。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知点是动点,且的三边所在直线的斜率满足
(1)求点的轨迹的方程;
(2)若是轨迹上异于点的一个点,且,直线交于点,问:是否存在点,使得的面积满足?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆上的点到左右两焦点的距离之和为,离心率为.
(1)求椭圆的方程;
(2)过右焦点的直线交椭圆于两点,若轴上一点满足,求直线的斜率的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过如下五个点中的三个点:.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为椭圆的左顶点,为椭圆上不同于点的两点,若原点在的外部,且为直角三角形,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知椭圆的两个焦点分别为,且到直线的距离等于椭圆的短轴长.

(Ⅰ) 求椭圆的方程;
(Ⅱ) 若圆的圆心为(),且经过,是椭圆上的动点且在圆外,过作圆的切线,切点为,当的最大值为时,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知中心在原点的椭圆的离心率,一条准线方程为
(1)求椭圆的标准方程;
(2)若以>0)为斜率的直线与椭圆相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的一个焦点坐标为,则双曲线的渐近线方程为(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆的左顶点的斜率为的直线交椭圆于另一个点,且点轴上的射影恰好为右焦点,若,则椭圆离心率的取值范围是_____________.

查看答案和解析>>

同步练习册答案