精英家教网 > 高中数学 > 题目详情

正方体ABCD-A1B1C1D1中,点E、F分别是棱AD、CC1上的点,若AF⊥A1E则


  1. A.
    AE=AD
  2. B.
    AE=C1F
  3. C.
    AE=CF
  4. D.
    C1F=CF
C
分析:在BC上取BM=AE,则由正方体的性质可得A1E∥B1M,且A1E=B1M.若AF⊥A1E,则 B1M⊥BF.证明直角三角形B1BM和 BCF全等,可得CF=BM,从而 CF=AE.
解答:解:如图所示:在BC上取BM=AE,
则由正方体的性质可得A1E∥B1M,且A1E=B1M.
若AF⊥A1E,则 B1M⊥BF.
即直角三角形B1BM和 直角三角形BCF的三条边互相垂直,
再由B1B=BC可得直角三角形B1BM和 BCF全等,
故 CF=BM,故 CF=AE.
故选:C.
点评:本题主要考查空间两直线的位置关系,得到直角三角形B1BM和 BCF全等、CF=BM,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的各顶点均在半径为1的球面上,则四面体A1-ABC的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是从上下底面处在水平状态下的棱长为a的正方体ABCD-A1B1C1D1中分离出来的:
(1)试判断A1是否在平面B1CD内;(回答是与否)
(2)求异面直线B1D1与C1D所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积的水.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为6的正方体ABCD-A1B1C1D1,E,F为AD、CD上靠近D的三等分点,H为BB1上靠近B的三等分点,G是EF的中点.
(1)求A1H与平面EFH所成角的正弦值;
(2)设点P在线段GH上,
GP
GH
=λ,试确定λ的值,使得二面角P-C1B1-A1的余弦值为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为2cm的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作出与截面PBC1平行的截面,简单证明截面形状,并求该截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,M是棱AB的中点,过A1,M,C三点的平面与CD所成角正弦值(  )

查看答案和解析>>

同步练习册答案