【题目】已知函数.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)在定义域内恒有f(x)≤0,求实数a的取值范围;
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax+ka﹣x(a>0且a≠1)是R上的奇函数,且f(1).
(1)求f(x)的解析式;
(2)若关于x的方程f(1)+f(1﹣3mx﹣2)=0在区间[0,1]内只有一个解,求m取值集合;
(3)是否存在正整数n,使不得式f(2x)≥(n﹣1)f(x)对一切x∈[﹣1,1]均成立?若存在,求出所有n的值若不存在,说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,倾斜角为的直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 .
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)已知点,若点的极坐标为,直线经过点且与曲线相交于两点,设线段的中点为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四位同学中仅有一人申请了北京大学的自主招生考试,当他们被问到谁申请了北京大学的自主招生考试时,甲说:“丙或丁申请了”;乙说:“丙申请了”;丙说:“甲和丁都没有申请”;丁说:“乙申请了”,如果这四位同学中只有两人说的是对的,那么申请了北京大学的自主招生考试的同学是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,若椭圆上一点满足,过点的直线与椭圆交于两点.
(1)求椭圆的方程;
(2)过点作轴的垂线,交椭圆于,求证:存在实数,使得.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了引导居民合理用水,居民生活用水实行二级阶梯式水价计量办法,具体如下:第一阶梯,每户居民月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民月用水量超过12吨,超过部分的价格为8元/吨.为了了解全市居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照, ,…, 分成8组,制成了如图1所示的频率分布直方图.
(图1) (图2)
(Ⅰ)求频率分布直方图中字母的值,并求该组的频率;
(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数的值(保留两位小数);
(Ⅲ)如图2是该市居民张某2016年1~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是. 若张某2016年1~7月份水费总支出为312元,试估计张某7月份的用水吨数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com