【题目】已知函数.
(1)当时,求函数在点处的切线方程;
(2)若函数有两个不同极值点,求实数的取值范围;
(3)当时,求证:对任意,恒成立.
【答案】(1)(2)(3)见解析
【解析】
(1)当时,求导数,将切点横坐标带入导数得到斜率,再计算切线方程.
(2)求导,取导数为0,参数分离得到,设右边为新函数,求出其单调性,求得取值范围得到答案.
(3)将导函数代入不等式,化简得到,设左边为新函数,根据单调性得到函数最值,得到证明.
(1)当时,.
∴
∴,又∵
∴,即
∴函 数 在点处的切线方程为.
(2)由题意知,函数的定义域为, ,
令,可得,
当时,方程仅有一解,∴,
∴
令
则由题可知直线与函数的图像有两个不同的交点.
∵
∴当时,,为单调递减函数;
当时,,为单调递增函数.
又∵,,且当时,
∴,
∴
∴实数的取值范围为.
(3)∵
∴要证对任意,恒成立
即证成立
即证成立
设
∴
∵时,易知在上为减函数
∴
∴在上为减函数
∴
∴成立
即对任意,恒成立.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex-ax-1,其中e是自然对数的底数,实数a是常数.
(1)设a=e,求函数f(x)的图象在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构为了解某地区中学生在校月消费情况,随机抽取了100名中学生进行调查.右图是根据调查的结果绘制的学生在校月消费金额的频率分布直方图.已知[350,450),[450,550),[550,650)三个金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为“高消费群” .
(1)求m,n的值,并求这100名学生月消费金额的样本平均数(同一组中的数据用该组区间的中点值作代表);
(2)根据已知条件完成下面2×2列联表,并判断能否有90%的把握认为“高消费群”与性别有关?
高消费群 | 非高消费群 | 合计 | |
男 | |||
女 | 10 | 50 | |
合计 |
(参考公式:,其中)
P() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着智能手机的普及,各类手机娱乐软件也如雨后春笋般涌现. 如表中统计的是某手机娱乐软件自2018年8月初推出后至2019年4月底的月新注册用户数,记月份代码为(如对应于2018年8月份,对应于2018年9月份,…,对应于2019年4月份),月新注册用户数为(单位:百万人)
(1)请依据上表的统计数据,判断月新注册用户与月份线性相关性的强弱;
(2)求出月新注册用户关于月份的线性回归方程,并预测2019年5月份的新注册用户总数.
参考数据:,,.
回归直线的斜率和截距公式:,.
相关系数(当时,认为两相关变量相关性很强. )
注意:两问的计算结果均保留两位小数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有2名男生、3名女生,全体排成一行,问下列情形各有多少种不同的排法?(以下各题请用数字作答)
(1)甲不在中间也不在两端;
(2)甲、乙两人必须排在两端;
(3)男、女生分别排在一起;
(4)男女相间;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一工厂生产了某种产品700件,该工厂需要对这些产品的性能进行检测现决定利用随机数表法从中抽取100件产品进行抽样检测,将700件产品按001,002,…,700进行编号
(1)如果从第8行第4列的数开始向右读,请你依次写出最先检测的3件产品的编号;(下面摘取了随机数表的第7~9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)检测结果分为优等、合格、不合格三个等级,抽取的100件产品的安全性能和环保性能的检测结果如下表(横向和纵向分别表示安全性能和环保性能):
(i)若在该样本中,产品环保性能是优等的概率为34%,求的值;
(ii)若,求在安全性能不合格的产品中,环保性能为优等的件数比不合格的件数少的概率.
件数 | 环保性能 | |||
优等 | 合格 | 不合格 | ||
安全性能 | 优等 | 6 | 20 | 5 |
合格 | 10 | 18 | 6 | |
不合格 | m | 4 | n |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com