【题目】已知函数, .
(Ⅰ)若,求在点处的切线方程;
(Ⅱ)讨论函数的单调性;
(Ⅲ)若存在两个极值点,求的最小值.
【答案】(1)(2)见解析(3)
【解析】试题分析:(Ⅰ)求 ,代入切线方程 ;(Ⅱ)求函数的导数 ,分,和 讨论,在 时再分和 两种情况讨论函数的单调性;(Ⅲ)根据(Ⅱ)的结果计算 ,设 ,转化为在的最小值,利用导数求函数在区间的最小值.
试题解析:解:(Ⅰ)时,
所以 ,
所以在点处的切线方程为
(Ⅱ)
的的对称轴为
当即时,方程无解,
在恒成立,所以在单增
当即时,方程有相等的实数解,
在恒成立,所以在单增
当即时,方程有解,
解得
当时, ,解不等式
所以在单增,在单减
当时, ,解不等式
所以在单增,在单减 ,在和单增,
综上所得:,单调递减,单调递增;
,单调递增,单调递减,
单调递增;,单调递增
(Ⅲ)由(Ⅰ)可知当时函数有两个极值点,且为方程
的两个根, ,
令,则问题转化为在的最值.
又∵且
,
所以在,所以当时最小
∴
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,x∈R,a∈R.
(1)a=1时,求证:f(x)在区间(﹣∞,0)上为单调增函数;
(2)当方程f(x)=3有解时,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是边长为1的正方形,侧棱底面,且, 是侧棱上的动点.
(Ⅰ)求四棱锥的体积;
(Ⅱ)如果是的中点,求证平面;
(Ⅲ)是否不论点在侧棱的任何位置,都有?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2≥1}, ,则A∩(RB)=( )
A.(2,+∞)
B.(﹣∞,﹣1]∪(2,+∞)
C.(﹣∞,﹣1)∪(2,+∞)
D.[﹣1,0]∪[2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体中,底面为矩形, , .点在棱上,平面与棱交于点.
(Ⅰ)求证: ;
(Ⅱ)求证:平面平面;
(Ⅲ)若, , ,平面平面,求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机抽取了40辆汽车在经过路段上某点时的车速(km/h),现将其分成六段: , , , , , ,后得到如图所示的频率分布直方图.
(Ⅰ)现有某汽车途经该点,则其速度低于80km/h的概率约是多少?
(Ⅱ)根据直方图可知,抽取的40辆汽车经过该点的平均速度约是多少?
(Ⅲ)在抽取的40辆且速度在(km/h)内的汽车中任取2辆,求这2辆车车速都在(km/h)内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,已知曲线:,点的极坐标为,直线的极坐标方程为,且点在直线上.
(1)求曲线的极坐标方程和直线的直角坐标方程;
(2)设向左平移个单位长度后得到,到的交点为, ,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com