【题目】某工厂在制造产品时需要用到长度为698mm的A型和长度为518mm的B型两种钢管,工厂利用长度为4000mm的钢管原材料,裁剪成若干A型和B型钢管。假设裁剪时损耗忽略不计,裁剪后所剩废料与原材料的百分比称为废料率.
(1)有两种裁剪方案的废料率小于4.5%,请说明这两种方案并计算它们的废料率;
(2)工厂现有100根原材料钢管,一根A型和一根B型钢管为一套毛胚。按(1)中的方案裁剪,最多可裁剪多少套毛胚?最终的废料率为多少?
科目:高中数学 来源: 题型:
【题目】已知动圆与轴相切于点,过点,分别作动圆异于轴的两切线,设两切线相交于,点的轨迹为曲线.
(1)求曲线的轨迹方程;
(2)过的直线与曲线相交于不同两点,若曲线上存在点,使得成立,求实数的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标平面中,△ABC的两个顶点A、B的坐标分别为A(﹣1,0),B (1,0),平面内两点G、M同时满足下列条件:(1);(2);(3)∥,则△ABC的顶点C的轨迹方程为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为(α为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,().
(1)求曲线C的极坐标方程;
(2)设直线l与曲线C相交于不同的两点,,指出的范围,并求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知分别为椭圆的左、右焦点,为该椭圆的一条垂直于轴的动弦,直线与轴交于点,直线与直线的交点为.
(1)证明:点恒在椭圆上.
(2)设直线与椭圆只有一个公共点,直线与直线相交于点,在平面内是否存在定点,使得恒成立?若存在,求出该点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,左右顶点分别为,,上顶点为,
(1)求椭圆离心率;
(2)点到直线的距离为,求椭圆方程;
(3)在(2)的条件下,点在椭圆上且异于、两点,直线与直线交于点,说明运动时以为直径的圆与直线的位置关系,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过双曲线C:1(a>0,b>0)右焦点F2作双曲线一条渐近线的垂线,垂足为P,与双曲线交于点A,若 ,则双曲线C的渐近线方程为( )
A.y=±xB.y=±xC.y=±2xD.y=±x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆 的左右焦点分别为的、,离心率为;过抛物线焦点的直线交抛物线于、两点,当时, 点在轴上的射影为。连结并延长分别交于、两点,连接; 与的面积分别记为, ,设.
(Ⅰ)求椭圆和抛物线的方程;
(Ⅱ)求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com