精英家教网 > 高中数学 > 题目详情

【题目】已知直线l1(a1)xyb0l2axby40求满足下列条件的ab的值.

(1)l1l2l1过点(1,1)

(2)l1l2l2在第一象限内与两坐标轴围成的三角形的面积为2.

【答案】(1) ;(2) .

【解析】试题分析:(1)因为l1l2a(a1)b0.①又l1过点(1,1)所以ab0.②联立①②可得结果,要进行检验,当a0b0,方程 不成立舍去(2因为l1l2所以ab(a1)0③由题意知a>0b>0,直线l2与两坐标轴的交点坐标分别为

联立求.

试题解析:

(1)l1l2a(a1)b0.

l1过点(1,1)ab0.

由①②,解得.

a0b0时不合题意,舍去.

a2b=-2.

(2)l1l2ab(a1)0

由题意知a>0b>0,直线l2与两坐标轴的交点坐标分别为

ab4

由③④,得a2b2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15人,则该班的学生人数是(
A.45
B.50
C.55
D.60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCDAB⊥ADAC⊥CD∠ABC=60°PA=AB=BC

EPC的中点.求证:

CD⊥AE

PD⊥平面ABE

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点. (Ⅰ)证明:平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:B1F∥平面A1BE;
(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且直线xy+1=0被圆截得的弦长为2,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求分别满足下列条件的直线l的方程:

(1)斜率是,且与两坐标轴围成的三角形的面积是6;

(2)经过两点A(1,0)、B(m,1);

(3)经过点(4,-3),且在两坐标轴上的截距的绝对值相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函数f(x)在区间[t,t+2](t>0)上的最小值;
(2)对一切实数x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明对一切x∈(0,+∞),lnx> 恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos22x﹣2,给出下列命题: ①β∈R,f(x+β)为奇函数;
α∈(0, ),f(x)=f(x+2α)对x∈R恒成立;
x1 , x2∈R,若|f(x1)﹣f(x2)|=2,则|x1﹣x2|的最小值为
x1 , x2∈R,若f(x1)=f(x2)=0,则x1﹣x2=kπ(k∈Z).其中的真命题有(
A.①②
B.③④
C.②③
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCDABCD的棱长为a,连接ACADABBDBCCD,得到一个三棱锥.求:

(1)三棱锥ABCD的表面积与正方体表面积的比值;

(2)三棱锥ABCD的体积.

查看答案和解析>>

同步练习册答案