【题目】4-4:坐标系与参数方程
已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.
(1)求直线的极坐标方程与曲线的直角坐标方程;
(2)直线与曲线在第一象限交于点,直线与直线交于点,求.
科目:高中数学 来源: 题型:
【题目】过点P(3,﹣4)作圆(x﹣1)2+y2=2的切线,切点分别为A,B,则直线AB的方程为( )
A.x+2y﹣2=0B.x﹣2y﹣1=0C.x﹣2y﹣2=0D.x+2y+2=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为自然对数的底数),是的导函数.
(Ⅰ)当时,求证;
(Ⅱ)是否存在正整数,使得对一切恒成立?若存在,求出的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年春节期间,当红影视明星翟天临“不知”“知网”学术不端事件在全国闹得沸沸扬扬,引发了网友对亚洲最大电影学府北京电影学院乃至整个中国学术界高等教育乱象的反思.为进一步端正学风,打击学术造假行为,教育部日前公布的2019年部门预算中透露,2019年教育部拟抽检博士学位论文约篇,预算为万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送位同行专家进行评议,位专家中有位以上(含位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”;有且只有位专家评议意见为“不合格”的学位论文,将再送位同行专家进行复评. 位复评专家中有位以上(含位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”设每篇学位论文被每位专家评议为“不合格”的概率均为且各篇学位论文是否被评议为“不合格”相互独立.
(1)相关部门随机地抽查了位博士硕士的论文,每人一篇,抽检是否合格,抽检得到的部分数据如下表所示:
合格 | 不合格 | |
博士学位论文 | ||
硕士学位论文 |
通过计算说明是否有的把握认为论文是否合格与作者的学位高低有关系?
(2)若,记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为,求的值;
(3)若拟定每篇抽检论文不需要复评的评审费用为元,需要复评的评审费用为元;除评审费外,其他费用总计为万元现以此方案实施,且抽检论文为篇,问是否会超过预算?并说明理由.
临界值表:
参考公式,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,F1(﹣2,0),F2(2,0)是椭圆C:的两个焦点,M是椭圆C上的一点,当MF1⊥F1F2时,有|MF2|=3|MF1|.
(1)求椭圆C的标准方程;
(2)过点P(0,3)作直线l与轨迹C交于不同两点A,B,使△OAB的面积为(其中O为坐标原点),问同样的直线l共有几条?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数(其中):①若函数的一个对称中心到与它最近一条对称轴的距离为,则;②若函数在上单调递增,则的范围为;③若,则在点处的切线方程为 ;④若,,则的最小值为;⑤若,则函数的图象向右平移个单位可以得到函数的图象.其中正确命题的序号有_______.(把你认为正确的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设常数在平面直角坐标系中,已知点直线曲线与轴交于点A与交于点分别是曲线与线段AB上的动点.
(1)用表示点B到点F的距离;
(2)若且求的值;
(3)设且存在点P、Q,使得是等边三角形,求的边长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中,,,,且的最小值为-2,的图象的相邻两条对称轴之间的距离为,的图象过点.
(1)求函数的解析式和单调递增区间;
(2)若函数的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com