精英家教网 > 高中数学 > 题目详情
如图,PC是圆O的切线,切点为C,直线PA与圆O交于A、B两点,∠APC的平分线分别交弦CA,CB于D,E两点,已知PC=3,PB=2,则
PE
PD
的值为
 
考点:与圆有关的比例线段
专题:直线与圆
分析:由已知条件推导出△PCB∽△PAC,△PCE∽△PAD,由此能求出
PE
PD
=
PC
PA
=
2
3
解答: 解:作直线CF,连结BF,∴CF⊥PC,
∴∠PCB+∠BCF=90°,
∵CF是直径,∴∠BCF+∠F=90°,
∴∠PCB=∠F,∵∠F=∠A,∴∠PCB=∠A,
∴△PCB∽△PAC,
PC
PA
=
PB
PC
=
2
3

∵∠PCE=∠PCB=∠A,∠CPE=∠APD,
∴△PCE∽△PAD,
PE
PD
=
PC
PA
=
2
3

故答案为:
2
3
点评:本题考查与圆有关的线段比值的求法,是中档题,解题时要认真审题,注意圆的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
x2
2
-2ax+3lnx.(0<a<3)
(1)当a=2时,求函数f(x)=
x2
2
-2ax+3lnx的单调区间.
(2)当x∈[1,+∞)时,若f(x)≥-5xlnx+3lnx-
3
2
恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:程序框图中,若输入n=6,m=4,那么输出的p=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x、y满足约束条件
2x-y+2≥0
x≥0
y≥0
,若目标函数z=Rx+y(R<0)取最大值的最优解只能是﹙0,2﹚,则R的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若变量x,y满足约束条件
x+3y-3≥0
5x-3y-5≤0
x-y+1≥0
,则z=x+y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,若输入的n=10,则输出的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=cos2(x-
π
12
)+sin2(x+
π
12
)-1
,下列选项中正确的是(  )
A、f(x)在(
π
4
π
2
)
内是递增的
B、f(x)的图象关于原点对称
C、f(x)的最小正周期为2π
D、f(x)的最大值为1

查看答案和解析>>

科目:高中数学 来源: 题型:

对于空间的两条直线m、n和一个平面α,下列命题中的真命题是(  )
A、若m∥α,n∥α,则m∥n
B、若m∥α,n?α,则m∥n
C、若m∥α,n⊥α,则m∥n
D、若m⊥α,n⊥α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex(其中e为自然对数的底数),g(x)=
n
2
x+m(m,n∈R)且7<e2
15
2

(1)若T(x)=f(x)g(x),m=1-
n
2
,求T(x)在[0,1]上最大值;
(2)若n=4时,方程f(x)=g(x)在[0,2]上恰有两个相等实根,求m的范围;
(3)若m=-
15
2
,n∈N*
,求使f(x)图象恒在g(x)图象上方的最大正整数n.

查看答案和解析>>

同步练习册答案