精英家教网 > 高中数学 > 题目详情
6.已知△ABC,若对任意t∈R,|$\overrightarrow{BA}-t\overrightarrow{BC}$|≥|$\overrightarrow{AC}$|恒成立,则△ABC是(  )
A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形

分析 则根据向量的减法的几何意义,由|$\overrightarrow{BA}-t\overrightarrow{BC}$|≥|$\overrightarrow{AC}$|对一切实数t都成立可得|$\overrightarrow{AM}$|≥|$\overrightarrow{AC}$|,进而得到AC⊥BC,即可得到三角形为直角三角形.

解答 解:令$\overrightarrow{AM}$=t$\overrightarrow{BC}$-$\overrightarrow{BA}$,则根据向量的减法的几何意义可得M在BC上,
由对任意t∈R,|$\overrightarrow{BA}-t\overrightarrow{BC}$|≥|$\overrightarrow{AC}$|恒成立可得:|$\overrightarrow{AM}$|≥|$\overrightarrow{AC}$|,
∴AC⊥BC,
则△ABC为直角三角形.
故选A.

点评 本题是一道构造非常巧妙的试题,解题的关键是由|$\overrightarrow{BA}-t\overrightarrow{BC}$|≥|$\overrightarrow{AC}$|对一切实数t都成立可得到AC为A到BC的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知非空集合A={x|-1≤x≤a},B={y|y=-2x,x∈A},C={y|y=$\frac{1}{x+2}$,x∈A},若C⊆B,则实数a的取值范围是[-1+$\frac{\sqrt{2}}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)是定义域为(-∞,0)∪(0,+∞)的偶函数,在区间(-∞,0)上单调递减,且f(-$\frac{1}{2}$)=0,若x•[f(x)+f(-x)]<0,则x的取值范围是(-∞,-$\frac{1}{2}$)∪(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,a:b:c=3:5:7,则这个三角形的最大角为(  )
A.30°B.90°C.120°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.用在矩阵行列式中所学的知识和方法,解方程组:$\left\{\begin{array}{l}mx+y=-1\\ 3mx-my=2m+3\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项和为Sn,且满足a1=1,2Sn=(n+1)an
(Ⅰ)求{an}的通项公式;
(Ⅱ)设Tn=$\frac{1}{2{a}_{1}}$+$\frac{1}{3{a}_{2}}$+…+$\frac{1}{(n+1){a}_{n}}$,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知对任意的x≥1,均有lnx-a(1-$\frac{1}{x}$)≥0.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.三棱锥P-ABC中,△ABC为等边三角形,PA=PB=PC=2,PA⊥PB,三棱锥P-ABC的外接球的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.求直线x-y=2被圆x2+y2=4截得的弦长为2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案