精英家教网 > 高中数学 > 题目详情

【题目】如图(甲),在直角梯形 分别为的中点现将沿折起使平面平面如图(乙).

(1)求证:平面平面

(2)若求二面角的余弦值

【答案】(1)详见解析(2)

【解析】试题分析:1欲证平面FHG∥平面ABE,只需证明线面平行,故只需要在平面FHG中寻找两条相交直线与平面平行;(2)这时,从而

过点,连结.因为,所以.因为,所以,所以,因为,所以

所以是二面角的平面角,由,得所以在即可得解.

试题解析:

(1)证明:由图(甲)结合已知条件知四边形为正方形,如图(乙),

分别为的中点,∴

,∴

.∴

同理可得

又∵,∴平面平面

(2)这时

从而

过点,连结

,∴

,∴,∴

,∴

是二面角的平面角,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α﹣2cosα=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ x2﹣x+a,a∈R
(1)当a=0时,求函数f(x)的极值;
(2)若函数f(x)在其定义域内有两个不同的极值点(极值点是指函数取极值时对应的自变量的值),记为x1 , x2 , 且x1<x2 . (ⅰ)求a的取值范围;
(ⅱ)若不等式e1+λ<x1x 恒成立,求正实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 :直线 与抛物线 )没有交点;已知命题 :方程 表示双曲线;若 为真, 为假,试求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图象和直线无交点给出下列结论

①方程一定没有实数根

②若则必存在实数使

③若则不等式对一切实数都成立

④函数的图象与直线也一定没有交点

其中正确的结论个数有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2ax+2b
(1)若a,b都是从0,1,2,3四个数中任意取的一个数,求函数f(x)有零点的概率;
(2)若a,b都是从区间[0,3]中任取的一个数,求f(1)<0成立时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在校运动会上,甲、乙、丙三位同学每人均从跳远,跳高,铅球,标枪四个项目中随机选一项参加比赛,假设三人选项目时互不影响,且每人选每一个项目时都是等可能的
(1)求仅有两人所选项目相同的概率;
(2)设X为甲、乙、丙三位同学中选跳远项目的人数,求X的分布列和数学期望E(X)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)判断函数的奇偶性,并予以证明;

2时求使的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

同步练习册答案