精英家教网 > 高中数学 > 题目详情

【题目】给出下列五个结论,其中正确的结论是(

A.函数的最大值为

B.已知函数)在上是减函数则a的取值范围是

C.在同一直角坐标系中,函数的图象关于y轴对称

D.在同一直角坐标系中,函数的图象关于直线对称

E.已知定义在R上的奇函数内有1010个零点,则函数的零点个数为2021

【答案】DE

【解析】

根据指数函数,对数函数性质判断AB,由对称性判断CD,由奇函数性质及零点的概念判断E

A错,令,则t的最大值为1,∴的最小值为

B错,∵函数上是减函数,∴解得

C错,在同一直角坐标系中,函数的图象关于x轴对称;

D正确,在同一直角坐标系中,函数的图象关于直线对称;

E正确,∵定义在R上的奇函数内有1010个零点,∴内有1010个零点,∴函数的零点个数为.故选DE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):

甲班:82 84 85 89 79 80 91 89 79 74

乙班:90 76 86 81 84 87 86 82 85 83

(1)求两个样本的平均数;

(2)求两个样本的方差和标准差;

(3)试分析比较两个班的学习情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数.

(Ⅰ)求的值;

(Ⅱ)若,求的值;

(Ⅲ)在(Ⅱ)的条件下,若函数上只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,所在平面互相垂直,且分别为的中点.

(1)求证:

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对称轴为,且.

(1)求的值;

(2)求函数上的最值.

(3)若函数,且方程有三个解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面使用类比推理,得到的结论正确的是( )

A. 直线,若,则.类比推出:向量,若,则.

B. 三角形的面积为,其中为三角形的边长,为三角形内切圆的半径,类比推出,可得出四面体的体积为,(分别为四面体的四个面的面积,为四面体内切球的半径)

C. 同一平面内,直线,若,则.类比推出:空间中,直线,若,则.

D. 实数,若方程有实数根,则.类比推出:复数,若方程有实数根,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象经过点,且在点处的切线方程为.

(1)求函数的解析式;

(2)求函数的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高中生在被问及“家朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从洛阳的高中生中随机抽取了55人,从上海的高中生中随机抽取了45人进行答题.洛阳高中生答题情况是选择家的占、选择朋友聚集的地方的占、选择个人空间的占.上海高中生答题情况是:选择朋友聚集的地方的占、选择家的占、选择个人空间的占.

(1)请根据以上调查结果将下面列联表补充完整并判断能否有的把握认为“恋家在家里感到最幸福”与城市有关

在家里最幸福

在其它场所最幸福

合计

洛阳高中生

上海高中生

合计

(2) 从被调查的不“恋家”的上海学生中用分层抽样的方法选出4人接受进一步调查从被选出的4 人中随机抽取2人到洛阳交流学习求这2人中含有在“个人空间”感到幸福的学生的概率.

其中d.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

(1)求函数的单调区间;

(2)若函数上存在最大值0,求函数上的最大值;

(3)求证:当时,.

查看答案和解析>>

同步练习册答案