【题目】某饮料厂生产两种饮料.生产1桶饮料,需该特产原料100公斤,需时间3小时;生产1桶 饮料需该特产原料100公斤,需时间1小时,每天饮料的产量不超过饮料产量的2倍,每天生产两种饮料所需该特产原料的总量至多750公斤,每天生产饮料的时间不低于生产饮料的时间,每桶饮料的利润是每桶饮料利润的1.5倍,若该饮料厂每天生产饮料桶,饮料桶时()利润最大,则_____.
科目:高中数学 来源: 题型:
【题目】某总公司在A,B两地分别有甲、乙两个下属公司同种新能源产品(这两个公司每天都固定生产50件产品),所生产的产品均在本地销售.产品进人市场之前需要对产品进行性能检测,得分低于80分的定为次品,需要返厂再加工;得分不低于80分的定为正品,可以进人市场.检测员统计了甲、乙两个下属公司100天的生产情况及每件产品盈利亏损情况,数据如表所示:
表1
甲公司 | 得分 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
件数 | 10 | 10 | 40 | 40 | 50 | |
天数 | 10 | 10 | 10 | 10 | 80 |
表2
甲公司 | 得分 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
件数 | 10 | 5 | 40 | 45 | 50 | |
天数 | 20 | 10 | 20 | 10 | 70 |
表3
每件正品 | 每件次品 | |
甲公司 | 盈2万元 | 亏3万元 |
乙公司 | 盈3万元 | 亏3.5万元 |
(1)分别求甲、乙两个公司这100天生产的产品的正品率(用百分数表示).
(2)试问甲、乙两个公司这100天生产的产品的总利润哪个更大?说明理由.
(3)若以甲公司这100天中每天产品利润总和对应的频率作为概率,从甲公司这100天随机抽取1天,记这天产品利润总和为X,求X的分布列及其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一条东西流向的笔直河流,现利用航拍无人机监控河流南岸相距150米的两点处(在的正西方向),河流北岸的监控中心在的正北方100米处,监控控制车在的正西方向,且在通向的沿河路上运动,监控过程中,保证监控控制车到无人机和到监控中心的距离之和150米,平面始终垂直于水平面,且,两点间距离维持在100米.
(1)当监控控制车到监控中心的距离为100米时,求无人机距离水平面的距离;
(2)若记无人机看处的俯角(),监控过程中,四棱锥内部区域的体积为监控影响区域,请将表示为关于的函数,并求出监控影响区域的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学中有许多形状优美寓意美好的曲线,曲线就是其中之一(如图).给出下列三个结论:
①曲线恰好经过6个整点(即横纵坐标均为整数的点);
②曲线上存在到原点的距离超过的点;
③曲线所围成的“心形”区域的面积小于3.
其中,所有错误结论的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的右焦点为F到直线的距离为,抛物线的焦点与椭圆E的焦点F重合,过F作与x轴垂直的直线交椭圆于S,T两点,交抛物线于C,D两点,且.
(1)求椭圆E及抛物线G的方程;
(2)过点F且斜率为k的直线l交椭圆于A,B点,交抛物线于M,N两点,如图所示,请问是否存在实常数,使为常数,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设以的边为长轴且过点的椭圆的方程为椭圆的离心率,面积的最大值为,和所在的直线分别与直线相交于点,.
(1)求椭圆的方程;
(2)设与的外接圆的面积分别为,,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前n项和为,把满足条件的所有数列构成的集合记为.
(1)若数列的通项为,则是否属于?
(2)若数列是等差数列,且,求的取值范围;
(3)若数列的各项均为正数,且,数列中是否存在无穷多项依次成等差数列,若存在,给出一个数列的通项;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com