精英家教网 > 高中数学 > 题目详情
设函数
(1)若a>0,求函数的最小值;
(2)若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f (x)>b恒成立的概率。
(1)  (2)

试题分析:





于是成立。
设事件A:“恒成立”,则
基本事件总数为12个,即
(1,2),(1,3),(1,4),(1,5);
(2,2),(2,3),(2,4),(2,5);
(3,2),(3,3),(3,4),(3,5);
事件A包含事件:(1,2),(1,3);
(2,2),(2,3),(2,4),(2,5);
(3,2),(3,3),(3,4),(3,5)共10个
由古典概型得
点评:本题考查用列举法计算基本事件数及随机事件发生的概率,解题的关键是熟练运用分类列举的方法及事件的性质将所有的基本事件一一列举出来,运用公式求出概率,注意列举时要不重不漏。列举法求概率适合基本事件数不太多的概率求解问题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数,且对于任意实数,恒有
(1)求函数的解析式;
(2)函数有几个零点?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(1)求实数的值;
(2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围;
(3)证明:对任意的正整数,不等式都成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数的零点的集合为{0,1},且是f(x)的一个极值点。
(1)求的值;
(2)试讨论过点P(m,0)与曲线y=f(x)相切的直线的条数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

命题“”的否定是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(a为实常数).
(1)若,求证:函数在(1,+.∞)上是增函数;
(2)求函数在[1,e]上的最小值及相应的值;
(3)若存在,使得成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数的单调增区间为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设函数..
(Ⅰ)时,求的单调区间;
(Ⅱ)当时,设的最小值为,若恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a<1,集合.
(1)求集合D(用区间表示);
(2)求函数在D内的极值点.

查看答案和解析>>

同步练习册答案