【题目】已知△ABC中,AC= ,BC= ,△ABC的面积为 ,若线段BA的延长线上存在点D,使∠BDC= ,则CD= .
科目:高中数学 来源: 题型:
【题目】如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF 2CE,G是线段BF上一点,AB=AF=BC.
(Ⅰ)若EG∥平面ABC,求 的值;
(Ⅱ)求二面角A﹣BF﹣E的大小的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.
甲产品所需工时 | 乙产品所需工时 | |
A设备 | 2 | 3 |
B设备 | 4 | 1 |
若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为( )
A.40万元
B.45万元
C.50万元
D.55万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,双曲线E的参数方程为 (θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求直线l的极坐标方程;
(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.
(1)若=19,求y与x的函数解析式;
(2)若要求“需更换的易损零件数不大于”的频率不小于0.8,求的最小值;
(3)假设这100台机器在购机的同时每台都购买18个易损零件,或每台都购买19个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买18个还是19个易损零件?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,G为BD中点,点R在线段BH上,且 =λ(λ>0).现将△AED,△CFD,△DEF分别沿DE,DF,EF折起,使点A,C重合于点B(该点记为P),如图2所示.
(I)若λ=2,求证:GR⊥平面PEF;
(Ⅱ)是否存在正实数λ,使得直线FR与平面DEF所成角的正弦值为 ?若存在,求出λ的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,2acosC=bcosC+ccosB.
(1)求角C的大小;
(2)若c=,a2+b2=10,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和Sn满足:Sn=nan﹣2n(n﹣1),首项=1.
(1)求数列{an}的通项公式;
(2)设数列的前n项和为Mn,求证: Mn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面,四边形是菱形,,,且,交于点,是上任意一点.
(1)求证:;
(2)若为的中点,且二面角的余弦值为,求与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com