精英家教网 > 高中数学 > 题目详情

【题目】2017年天猫五一活动结束后,某地区研究人员为了研究该地区在五一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众中抽取了500人作调查,所得概率分布直方图如图所示:记年龄在对应的小矩形的面积分别是,且.

(1)以频率作为概率,若该地区五一消费超过3000元的有30000人,试估计该地区在五一活动中消费超过3000元且年龄在的人数;

(2)若按照分层抽样,从年龄在的人群中共抽取6人,再从这6人中随机抽取2人作深入调查,求至少有1人的年龄在内的概率.

【答案】(1)15000(人);(2).

【解析】试题分析:

(1)由频率分布直方图可得年龄在的人数为15000人;

(2)利用题意结合古典概型公式可得:至少有1人的年龄在内的概率为 .

试题解析:

(1)设区间的频率为x,则区间内的频率依次为,依题意得

在五一活动中消费超过3000元且年龄在岁之间的人数为:

(人)

(2)若按分层抽样,年龄在分别抽取2人和4人,记年龄在的两

人为A,B,记年龄在的4人为1,2,3,4;随机抽取两人可能情况有:

(A,B),(A,1)(A,2),(A,3),(A,4),(B,1),(B,2),(B,3),(B,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共15种情况,

其中满足条件的有:(A,B),(A,1)(A,2),(A,3),(A,4),(B,1),(B,2),(B,3),(B,4)共9

种故所求概率为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设抛物线上的点到焦点的距离.

)求抛物线的方程;

)如图,直线与抛物线交于两点,点关于轴的对称点是.求证:直线恒过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.

(1)求椭圆的方程式;

(2)已知动直线与椭圆相交于两点.

①若线段中点的横坐标为,求斜率的值;

②已知点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2-a-lnx,其中aR.

)讨论f(x)的单调性;

)当时,恒成立,求a的取值范围.(其中,e=2.718为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)当时,求曲线处的切线方程;

)当时,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆的一个短轴端点及两个焦点构成的三角形的面积为,圆C方程为.

(1)求椭圆及圆C的方程;

(2)过原点O作直线l与圆C交于A,B两点,若,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象过,若有4个不同的正数满足,且,则从这四个数中任意选出两个,它们的和不超过5的概率为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

其中,若函数,且它的最小正周期为

(普通中学只做1,2问)

(1)求的值,并求出函数的单调递增区间;

(2)当(其中)时,记函数的最大值与最小值分

别为,设,求函数的解

析式;

(3)在第(2)问的前提下,已知函数 ,若对于任意 ,总存在,使得

成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:

组号

第一组

第二组

第三组

第四组

第五组

分组

[5060

[6070

[7080

[8090

[90100]

1)求图中a的值;

2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;

3)现用分层抽样的方法从第345组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?

查看答案和解析>>

同步练习册答案