精英家教网 > 高中数学 > 题目详情
将一颗均匀的正方体骰子(它的6个面分别标有点数1,2,3,4,5,6)连续投掷两次,记骰子朝上的点数分别为m,n.已知向量
p
=(m,n),
q
=(-6,3),则向量
p
q
垂直的概率为
 
考点:列举法计算基本事件数及事件发生的概率,平面向量数量积的运算
专题:平面向量及应用,概率与统计
分析:试验发生包含的事件数是6×6种结果,满足条件的事件是向量
p
q
垂直,根据向量垂直的充要条件得到2m=n,列举出所有满足2m=n的情况,得到结果.
解答: 解:试验发生包含的事件数是6×6=36种结果,
∵向量
p
=(m,n),
q
=(-6,3),则向量
p
q
垂直,
∴-6m+3n=0,
即2m=n,
可以列举出所有满足2m=n的情况,(1,2)(2,4),(3,6)共有3种结果,
故两个向量垂直的概率是
3
36
=
1
12

故答案为:
1
12
点评:本题考查古典概型,考查向量垂直的关系,考查分步计数原理,是一个综合题,本题解题的关键是算出向量垂直时两个变量满足的条件,再列举出结果数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在平面直角坐标系xOy中,圆C的方程为x2+y2=-2y+3,直线l过点(1,0)且与直线x-y+1=0垂直.若直线l与圆C交于A、B两点,则△OAB的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的顶点A固定,点A的对边BC的长是2a,边BC上的高为b,边BC沿一条定直线移动,求△ABC外心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程是x2+y2-4x+F=0,且圆C与直线y=x+1相切,那么F=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某班50名学生在一次百米跑测试中,成绩全部介于13秒与18秒之间,将测度结果按如下方式分成五组:第一组[13,14),第二组[14,15),…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)分别求该班成绩在[13,14),[17,18]上的学生人数;
(Ⅱ)如果每次从成绩在[13,14)∪[17,18]上的同学中随机抽取2人,并用m,n分别表示被抽到的两位同学的百米测试成绩,若随机抽取3次(每次抽后都放回),设事件“|m-n|>1”发生的次数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等差数列{an}的前n项和,数列{bn}是等比数列,b1=
1
2
,a5-1恰为S4
1
b2
的等比中项,圆C:(x-2n)2+(y-
Sn
2=2n2,直线l:x+y=n,对任意n∈N*,直线l都与圆C相切.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若n=1时,c1=1+
1
1
b1
,n≥2时,cn=
1
1
bn-1
+1
+
1
1
bn-1
+2
+…+
1
1
bn
,{cn}的前n项和为Tn,求证:对任意≥2,都有Tn
n
2
+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知an=logn+1(n+2)(n∈N+),把使得乘积a1•a2•a3…an的整数的数n叫做“穿越数”,并把这些“穿越数”由小到大排序构成的数列记为{bn}(m∈N+
(1)求区间(1,2015)内的所有“穿越数”的和;
(2)证明:
1
b1
+
1
b2
+…+
1
bn
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|
1
2
≤2x≤2},B={x|x≥a}.
(1)若a=0时.求A∩B,A∪B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x+y-1≤0
x≥0
y≥-1
,则目标函数Z=x+2y的取值范围是(  )
A、[-2,0]
B、[0,+∞]
C、[0,2]
D、[-2,2]

查看答案和解析>>

同步练习册答案