精英家教网 > 高中数学 > 题目详情
12.将曲线$y=2sin(x+\frac{π}{3})$上所有点的横坐标伸长为原来的3倍,纵坐标不变,得到的曲线方程为(  )
A.$y=2sin(3x+\frac{π}{3})$B.y=2sin(3x+π)C.$y=2sin(\frac{1}{3}x+\frac{π}{3})$D.$y=2sin(\frac{1}{3}x+\frac{π}{9})$

分析 直接利用函数图象中变换的伸缩变换求出函数的解析式.

解答 解:正弦曲线$y=2sin(x+\frac{π}{3})$上所有的点横坐标伸长到原来的3倍,纵坐标不变,
得到:y=2sin($\frac{1}{3}$x+$\frac{π}{3}$).
故选:C.

点评 本题主要考查了函数图象变换中的伸缩变换,属于基础题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.实轴长为4$\sqrt{5}$,且焦点为(±5,0)的双曲线的标准方式为(  )
A.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{y}^{2}}{20}$-$\frac{{x}^{2}}{5}$=1C.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{20}$=1D.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{25}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知角α终边上一点P(m,1),cosα=-$\frac{1}{3}$,求tanα的值;
(2)扇形AOB的周长为8cm,它的面积为3cm2,求圆心角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某比赛现场放着甲、乙、丙三个空盒,主持人从一副不含大小王的52张扑克牌中,每次任取两张牌,将一张放入甲盒,若这张牌是红色的(红桃或方片),就将另一张放入乙盒;若这张牌是黑色的(黑桃或梅花),就将另一张放入丙盒;重复上述过程,直到所有扑克牌都放入三个盒子内,给出下列结论:
①乙盒中黑牌不多于丙盒中黑牌 
②乙盒中红牌与丙盒中黑牌一样多
③乙盒中红牌不多于丙盒中红牌 
④乙盒中黑牌与丙盒中红牌一样多
其中正确结论的序号为②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是丁.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2sin(2ωx+$\frac{π}{6}$)+1(其中0<ω<1),若点(-$\frac{π}{6}$,1)是函数f(x)图象的一个对称中心,
(1)试求ω的值;
(2)先列表,再作出函数y=f(x-$\frac{π}{6}$)在区间[-π,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数的导数:
(1)y=(x+1)(x+2)(x+3);           
(2)y=excosx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)的导函数f'(x),且满足f(x)=2xf'(1)+lnx,则f′(1)=(  )
A.-1B.-eC.1D.e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个样本a,99,b,101,c中5个数恰好构成等差数列,则这个样本的标准差为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案