精英家教网 > 高中数学 > 题目详情
3.已知圆C:(x+1)2+y2=r2与抛物线D:y2=16x的准线交于A,B两点,且|AB|=8,则圆C的面积(  )
A.B.C.16πD.25π

分析 求出抛物线的准线,进而求出弦心距d,结合${r}^{2}={d}^{2}+(\frac{AB}{2})^{2}$,可得答案.

解答 解:抛物线D:y2=16x的准线方程为x=-4,
圆C的圆心(-1,0)到准线的距离d=3,
又由|AB|=8,
∴${r}^{2}={d}^{2}+(\frac{AB}{2})^{2}$=25,
故圆C的面积S=25π,
故选:D

点评 本题考查抛物线的定义、标准方程,以及简单性质的应用,熟练掌握抛物线的性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+ax+3,x∈R.
(1)若f(2-x)=f(2+x),求实数a的值?
(2)当x∈[-2,4]时,求函数f(x)的最大值?
(3)当x∈[-2,2]时,f(x)≥a恒成立,求实数a的最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的面积为abπ,则${∫}_{0}^{\frac{\sqrt{2}}{2}}$$\sqrt{1{-2x}^{2}}$dx=(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{\sqrt{2}π}{4}$D.$\frac{\sqrt{2}π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(理)数列{an}的前n项和为Sn,且a1=1,对任意n∈N+,有an+1=$\frac{2}{3}$Sn,则an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{2}{3}×(\frac{5}{3})^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=sin(πx+φ)-2cos(πx+φ)(0<φ<π)的图象关于直线x=1对称,则sin2φ=(  )
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C的顶点为坐标原点,焦点为F(0,1),
(1)求抛物线C的方程;
(2)过点F作直线l交抛物线于A,B两点,若直线AO,BO分别与直线y=x-2交于M,N两点,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知l,m,n为两两垂直的三条异面直线,过l作平面α与m垂直,则n与α的关系是(  )
A.n∥αB.n∥α或n?αC.n?α或n与α不平行D.n?α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.(理)现有11个保送大学的名额分配给8个班级,每班至少有1个名额,则名额分配的方法共有(  )
A.56种B.112种C.120种D.240种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(sinx)=cos2x,则f($\frac{1}{4}$)=(  )
A.$-\frac{7}{8}$B.$\frac{7}{8}$C.$-\frac{1}{8}$D.$\frac{1}{8}$

查看答案和解析>>

同步练习册答案