精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2sin(x+ )cosx.
(1)若0≤x≤ ,求函数f(x)的值域;
(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)= ,b=2,c=3,求cos(A﹣B)的值.

【答案】
(1)解:f(x)=2sin(x+ )cosx

=(sinx+ cosx)cosx

=sinxcosx+ cos2x

= sin2x+ cos2x+

=sin(2x+ )+

得,

即函数f(x)的值域为


(2)解:由

又由 ,∴

,解得

在△ABC中,由余弦定理a2=b2+c2﹣2bccosA=7,

解得

由正弦定理 ,得

∵b<a,∴B<A,∴

∴cos(A﹣B)=cosAcosB+sinAsinB

=


【解析】(1)利用三角恒等变换化简f(x),根据x的取值范围即可求出函数f(x)的值域;(2)由f(A)的值求出角A的大小,再利用余弦定理和正弦定理,即可求出cos(A﹣B)的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)的导函数y=f'(x)的图象如图所示,给出如下命题:
①0是函数y=f(x)的一个极值点;
②函数y=f(x)在 处切线的斜率小于零;
③f(﹣1)<f(0);
④当﹣2<x<0时,f(x)>0.
其中正确的命题是 . (写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=|x﹣1|+m|x﹣2|+6|x﹣3|在x=2时取得最小值,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定点的距离之和为.

(1)求动点轨迹的方程;

(2)设,过点作直线,交椭圆于不同于两点,直线 的斜率分别为 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在[1,+∞)上的函数,且f(x)= ,则函数y=2xf(x)﹣3在区间(1,2016)上的零点个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中a∈R.
(1)根据a的不同取值,讨论f(x)的奇偶性,并说明理由;
(2)已知a>0,函数f(x)的反函数为f1(x),若函数y=f(x)+f1(x)在区间[1,2]上的最小值为1+log23,求函数f(x)在区间[1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的公差d≠0满足成等比数列,若=1,Sn{}的前n项和,则的最小值为________

【答案】4

【解析】

成等比数列,=1,可得:= ,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入利用分离常数法化简后,利用基本不等式求出式子的最小值.

成等比数列,a1=1,

=

∴(1+2d)2=1+12d,d≠0,

解得d=2.

∴an=1+2(n﹣1)=2n﹣1.

Sn=n+×2=n2

==n+1+﹣2≥2﹣2=4,

当且仅当n+1=时取等号,此时n=2,且取到最小值4,

故答案为:4.

【点睛】

本题考查了等差数列的通项公式、前n项和公式,等比中项的性质,基本不等式求最值,在利用基本不等式求最值时,要特别注意拆、拼、凑等技巧,使其满足基本不等式中”(即条件要求中字母为正数)、“”(不等式的另一边必须为定值)、“”(等号取得的条件)的条件才能应用,否则会出现错误.

型】填空
束】
17

【题目】是公比为正数的等比数列,,

(1)的通项公式;

(2)是首项为1,公差为2的等差数列,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 的极大值为1,则函数f(x)的极小值为(
A.
B.﹣1
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列{an}中,a1=2,且a2+1,a4+1,a8+1成等比数列.
(1)求数列{an}通项公式;
(2)设数列{bn}满足bn= ,求适合方程b1b2+b2b3+…+bnbn+1= 的正整数n的值.

查看答案和解析>>

同步练习册答案