精英家教网 > 高中数学 > 题目详情

已知函数数学公式,若函数f(x)在定义域内有零点,则a的取值范围是________.

(0,1]
分析:先求导函数,从而可确定函数的最小值,要使函数f(x)在定义域内有零点,则需最小值小于等于0即可.
解答:函数的定义域为(0,+∞)


令f′(x)=0,∴x=a
当x∈(0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0,
∴x=a时,函数f(x)取得最小值lna
∵函数f(x)在定义域内有零点
∴lna≤0
∴0<a≤1
∴函数f(x)在定义域内有零点时,a的取值范围是(0,1]
故答案为:(0,1]
点评:本题以函数为载体,考查导数的运用,考查函数的零点,解题的关键是将函数f(x)在定义域内有零点,转化为最小值小于等于0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=|x-2|,g(x)=-|x+3|+m
(1)解关于x的不等式f(x)-1<0;
(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+lnx-ax(a∈R).
(1)若a=3,求函数f(x)的单调递减区间;
(2)若函数f(x)在(0,1)上为增函数,求实数a的取值范围;
(3)在(2)的结论下,设g(x)=e2x+|ex-a|,x∈[0,ln3],求函数g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x+alnx(a∈R).
(1)当时a=-4时,求f(x)的最小值;
(2)若函数f(x)在区间(0,1)上为单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx,g(x)=x-a
x

(1)若a∈R,求函数f(x)的极值;
(2)若函数f(x)在(1,2)上是增函数,g(x)在(0,1)上为减函数,求f(x),g(x)的表达式;
(3)对于(2)中的f(x),g(x),求证:当x>0时,方程f(x)=g(x)+2有唯-解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(2-a)(x-1)-2lnx.(I)当a=1时,求f(x)的极值;(II)若函数f(x)在(0,
12
)
上恒大于零,求实数a的最小值.

查看答案和解析>>

同步练习册答案