精英家教网 > 高中数学 > 题目详情
已知双曲线C:的一个焦点是F2(2,0),且
(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.
【答案】分析:(1)根据半焦距c和a与b的关系联立方程求得a和b,则双曲线方程可得.
(2)把直线l与双曲线方程联立消去y,根据判别式大于0判断出直线与双曲线定有交点,进而根据韦达定理求得焦点横坐标的和与积得表达式,根据双曲线的性质求得m的范围.设A,B的坐标,则可知其中点的坐标,代入曲线3(x-1)2-y2=3等式成立,可判断出AB的中点在此曲线上.
(3)设存在实数m,使∠AOB为锐角,根据判断出x1x2+y1y2>0,根据(2)中求得x1x2的表达式,进而可去知y1y2的表达式,进而求得根据x1x2+y1y2>0求得m的范围,结果与m2>3矛盾,假设不成立,判断出这样的实数不存在.
解答:解:(1)c=2c2=a2+b2
∴4=a2+3a2∴a2=1,b2=3,∴双曲线为
(2)l:m(x-2)+y=0由得(3-m2)x2+4m2x-4m2-3=0
由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立


∴m2>3∴
设A(x1,y1),B(x2,y2),则


∴M在曲线3(x-1)2-y2=3上.

(3)A(x1,y1),B(x2,y2),设存在实数m,使∠AOB为锐角,
∴x1x2+y1y2>0
因为y1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2
∴(1+m2)x1x2-2m2(x1+x2)+4m2>0
∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0
,与m2>3矛盾
∴不存在
点评:本题主要考查了双曲线的应用,考查了学生综合分析问题和基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分18分,第(1)小题4分,第(2)小题6分,第(2)小题8分)

已知双曲线C:的一个焦点是,且

(1)求双曲线C的方程;

(2)设经过焦点的直线的一个法向量为,当直线与双曲线C的右支相交于不同的两点时,求实数的取值范围;并证明中点在曲线上。

(3)设(2)中直线与双曲线C的右支相交于两点,问是否存在实数,使得为锐角?若存在,请求出的范围;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:上海市长宁区2010届高三第二次模拟考试数学文 题型:解答题

(本题满分18分,第(1)小题4分,第(2)小题6分,第(2)小题8分)
已知双曲线C:的一个焦点是,且
(1)求双曲线C的方程;
(2)设经过焦点的直线的一个法向量为,当直线与双曲线C的右支相交于不同的两点时,求实数的取值范围;并证明中点在曲线上。
(3)设(2)中直线与双曲线C的右支相交于两点,问是否存在实数,使得为锐角?若存在,请求出的范围;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:上海市长宁区2010届高三第二次模拟考试数学文 题型:解答题

(本题满分18分,第(1)小题4分,第(2)小题6分,第(2)小题8分)

已知双曲线C:的一个焦点是,且

(1)求双曲线C的方程;

(2)设经过焦点的直线的一个法向量为,当直线与双曲线C的右支相交于不同的两点时,求实数的取值范围;并证明中点在曲线上。

(3)设(2)中直线与双曲线C的右支相交于两点,问是否存在实数,使得为锐角?若存在,请求出的范围;若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省揭阳一中高二(上)期末数学试卷(理科)(解析版) 题型:解答题

已知双曲线c:的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率为
(1)求双曲线的方程;
(2)若有两个半径相同的圆c1,c2,它们的圆心都在x轴上方且分别在双曲线c的两渐近线上,过双曲线的右焦点且斜率为-1的直线l与圆c1,c2都相切,求两圆c1,c2圆心连线斜率的范围.

查看答案和解析>>

科目:高中数学 来源:2010年高考数学模拟试卷3(文科)(解析版) 题型:解答题

已知双曲线C:的一个焦点是F2(2,0),且
(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案