精英家教网 > 高中数学 > 题目详情

【题目】某公司为了对一种新产品进行合理定价,将该产品按亊先拟定的价格进行试销,得到如下数据:

单价x(元)

4

5

6

7

8

9

销量V(件)

90

84

83

80

75

68

由表中数据.求得线性回归方程为 =﹣4x+a.若在这些样本点中任取一点,則它在回归直线右上方的概率为

A.
B.
C.
D.

【答案】C
【解析】解: = (4+5+6+7+8+9)= = (90+84+83+80+75+68)=80 ∵ =﹣4x+a,
∴a=106,
∴回归直线方程 =﹣4x+106;
数据(4,90),(5,84),(6,83),(7,80),(8,75),(9,68).
6个点中有3个点在直线右上方,即(6,83),(7,80),(8,75).
其这些样本点中任取1点,共有6种不同的取法,
故这点恰好在回归直线右上方的概率P= =
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】阅读如图的程序框图,运行相应的程序,则输出的S值为( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C1的参数方程为 ,曲线C2的极坐标方程为
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)设P为曲线C1上一点,Q曲线C2上一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxcosx﹣sin2x﹣3cos2x+1.
(1)求函数y=f(x)的单调递增区间;
(2)若函数y=f(x)在区间[0,a]上恰有3个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin2x+cos2x.
(1)当x∈[0, ]时,求f(x)的取值范围;
(2)求函数y=f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检测某种产品的质量(单位:千克),抽取了一个容量为N的样本,整理得到的数据作出了频率分布表和频率分布直方图如图:

分组

频数

频率

[17.5,20)

10

0.05

[20,225)

50

0.25

[22.5,25)

a

b

[25,27.5)

40

c

[27.5,30]

20

0.10

合计

N

1

(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求频率分布直方图中d的值;
(Ⅲ)从该产品中随机抽取一件,试估计这件产品的质量少于25千克的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命题.
(1)求实数m的取值集合M;
(2)设不等式 的解集为N,若x∈N是x∈M的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知锐角△ABC的三个内角A,B,C的对边分别为a,b,c,且 =(a,b+c),
(1)求角A;
(2)若a=3,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四棱锥E﹣ABCD中,四边形ABCD为平行四边形,△BCE为等边三角形,△ABE是以∠A为直角的等腰直角三角形,且AC=BC. (Ⅰ)证明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A﹣DE﹣C的余弦值.

查看答案和解析>>

同步练习册答案