精英家教网 > 高中数学 > 题目详情
5.已知正项等比数列{an}的前n项和为Sn,且a4=$\frac{1}{8}$,$\frac{{S}_{4}}{{S}_{2}}$=$\frac{5}{4}$,数列{bn}的前n项和为Tn,且Tn=n2+n.
(1)求{an},{bn}的通项公式;
(2)若数列{cn}满足(n+1)2nanbncn=1,求数列{an+cn}的前n项和.

分析 (1)利用等比数列的通项公式与求和公式可得an,利用递推关系可得bn
(2)利用等比数列的求和公式、“裂项求和”方法即可得出.

解答 解:(1)设正项等比数列{an}的公比为q>0,∵a4=$\frac{1}{8}$,$\frac{{S}_{4}}{{S}_{2}}$=$\frac{5}{4}$,
∴${a}_{1}{q}^{3}$=$\frac{1}{8}$,$\frac{{a}_{1}(1+q+{q}^{2}+{q}^{3})}{{a}_{1}(1+q)}$=$\frac{5}{4}$,
解得a1=1,q=$\frac{1}{2}$.
∴an=$(\frac{1}{2})^{n-1}$.
∵Tn=n2+n,∴n=1时,b1=T1=2.
n≥2时,bn=Tn-Tn-1=n2+n-[(n-1)2+(n-1)]=2n,n=1时也成立.
∴bn=2n.
(2)∵(n+1)2nanbncn=1,
∴cn=$\frac{1}{4n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.
∴数列{an+cn}的前n项和=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$+$\frac{1}{2}[(1-\frac{1}{3})$+$(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$2-\frac{1}{{2}^{n-1}}$+$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{11}{4}$-$\frac{1}{{2}^{n-1}}$-$\frac{2n+3}{2(n+1)(n+2)}$.

点评 本题考查了数列递推关系、等比数列的通项公式与求和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.过点A(4,-1)且在x轴和y轴上的截距相等的直线方程是x+y-3=0,或x+4y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$C:\frac{x^2}{4}+{y^2}=1$,斜率为$\frac{{\sqrt{3}}}{2}$的动直线l与椭圆C交于不同的两点A,B.
(1)设M为弦AB的中点,求动点M的轨迹方程;
(2)设F1,F2为椭圆C在左、右焦点,P是椭圆在第一象限上一点,满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=-\frac{5}{4}$,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是(  )
A.f(x)•g(x)是偶函数B.f(x)+x2是奇函数C.f(x)-sinx是奇函数D.g(x)+2x是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知sinx+$\sqrt{3}$cosx=$\frac{8}{5}$,则sin(x+$\frac{π}{3}$)=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的函数满足f(1)=2,且f(x)的导数f′(x)在R上恒有f′(x)<1(x∈R),则不等式f(x)<x+1的解集为(  )
A.(1,+∞)B.(-∞,-1)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)的定义域为[-1,5],在同一坐标系下,函数y=f(x)的图象与直线x=1的交点个数为(  )
A.0个B.1个C.2个D.0个或者2个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a∈R,当x>0时,f(x)=log2($\frac{1}{x}$+a).
(1)若函数f(x)过点(1,1),求此时函数f(x)的解析式;
(2)若函数g(x)=f(x)+2log2x只有一个零点,求实数a的范围;
(3)设a>0,若对任意实数t∈[$\frac{1}{3}$,1],函数f(x)在[t,t+1]上的最大值与最小值的差不大于1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在等差数列{an}中,a4+a6=6,且a2=1,则公差d等于(  )
A.$\frac{2}{3}$B.$\frac{3}{5}$C.$\frac{6}{5}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案