【题目】已知函数.
(1)当时,求函数的极值;
(2)当时,若不等式恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】某外卖平台为提高外卖配送效率,针对外卖配送业务提出了两种新的配送方案,为比较两种配送方案的效率,共选取50名外卖骑手,并将他们随机分成两组,每组25人,第一组骑手用甲配送方案,第二组骑手用乙配送方案.根据骑手在相同时间内完成配送订单的数量(单位:单)绘制了如下茎叶图:
(1)根据茎叶图,求各组内25位骑手完成订单数的中位数,已知用甲配送方案的25位骑手完成订单数的平均数为52,结合中位数与平均数判断哪种配送方案的效率更高,并说明理由;
(2)设所有50名骑手在相同时间内完成订单数的平均数,将完成订单数超过记为“优秀”,不超过记为“一般”,然后将骑手的对应人数填入下面列联表;
优秀 | 一般 | |
甲配送方案 | ||
乙配送方案 |
(3)根据(2)中的列联表,判断能否有的把握认为两种配送方案的效率有差异.
附:,其中.
0.05 | 0.010 | 0.005 | |
3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】FEV1(一秒用力呼气容积)是肺功能的一个重要指标.为了研究某地区10~15岁男孩群体的FEV1与身高的关系,现从该地区A、B、C三个社区10~15岁男孩中随机抽取600名进行FEV1与身高数据的相关分析.
(1)若A、B、C三个社区10~15岁男孩人数比例为1:3:2,按分层抽样进行抽取,请求出三个社区应抽取的男孩人数.
(2)经过数据处理后,得到该地区10~15岁男孩身高(cm)与FEV1(L)对应的10组数据,并作出如下散点图:
经计算得:,,,,的相关系数.
①请你利用所给公式与数据建立关于的线性回归方程,并估计身高160cm的男孩的FEV1的预报值.
②已知若①中回归模型误差的标准差为,则该地区身高160cm的男孩的FEV1的实际值落在,内的概率为.现已求得,若该地区有两个身高160cm的12岁男孩M和N,分别测得FEV1值为2.8L和2.3L,请结合概率统计知识对两个男孩的FEV1指标作出一个合理的推断与建议.
附:样本的相关系数,其回归方程的斜率和截距的最小二乘法估计分别为,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直角坐标系中,圆(为参数)上的每一点的横坐标不变,纵坐标变为原来的,得到曲线.以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)设与两坐标轴分别相交于两点,点在上,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,和均为以为直角顶点的等腰直角三角形,,,,,为的中点.
(1)求证:;
(2)求二面角的大小;
(3)设为线段上的动点,使得平面平面,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是公差不为零的等差数列,满足,,设正项数列的前项和为,且.
(1)求数列和的通项公式;
(2)在和之间插入1个数,使、、成等差数列;在和之间插入2个数、,使、、、成等差数列;;在和之间插入个数、、、,使、、、、、成等差数列.
① 求;
② 对于①中的,是否存在正整数、,使得成立?若存在,求出所有的正整数对;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,若△的三个顶点都在抛物线上,且,则称该三角形为“核心三角形”.
(1)是否存在“核心三角形”,其中两个顶点的坐标分别为和?请说明理由;
(2)设“核心三角形”的一边所在直线的斜率为4,求直线的方程;
(3)已知△是“核心三角形”,证明:点的横坐标小于2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com