精英家教网 > 高中数学 > 题目详情
设f(x)是定义在(-∞,+∞)上的奇函数,且在区间(0,+∞)上单调递增,若f(
1
2
)=0
,三角形的内角A满足f(cosA)<0,则A的取值范围是______.
∵f(x)是定义在(-∞,+∞)上的奇函数,且在区间(0,+∞)上单调递增,
∴f(x)在区间(-∞,0)上也单调递增.
f(
1
2
)=0
,∴f(-
1
2
)=0

当A为锐角时,cosA>0,∴不等式f(cosA)<0变形为f(cosA)<f(
1
2
),0<cosA<
1
2
π
3
<A<
π
2

当A为直角时,cosA=0,而奇函数满足f(0)=0,∴A为直角不成立.
当A为钝角时,cosA<0,∴不等式f(cosA)<0变形为f(cosA)<f(-
1
2
),<cosA<-
1
2
3
<A<π
综上,A的取值范围为(
π
3
π
2
)∪(
3
,π)

故答案为(
π
3
π
2
)∪(
3
,π)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=
12
对称,则f(1)+f(2)+f(3)+f(4)+f(5)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

例2.设f(x)是定义在[-3,
2
]上的函数,求下列函数的定义域(1)y=f(
x
-2)
(2)y=f(
x
a
)(a≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在[-1,1]上的奇函数,g(x)的图象与f(x)的图象关于直线x=1对称,而当x∈[2,3]时,g(x)=-x2+4x-4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)对任意x1,x2∈[0,1],且x1≠x2,求证:|f(x2)-f(x1)|<2|x2-x1|;
(Ⅲ)对任意x1,x2∈[0,1],且x1≠x2,求证:|f(x2)-f(x1)|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图象,则f(2013)+f(2014)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江一模)设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x-2)=f(x+2)且当x∈[-2,0]时,f(x)=(
1
2
x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是
34
,2)
34
,2)

查看答案和解析>>

同步练习册答案