精英家教网 > 高中数学 > 题目详情
已知
a
=(sinθ,cosθ)、
b
=(
3
,1)
(1)若
a
b
,求tanθ的值;
(2)若f(θ)=|
a
+
b
|,△ABC的三个内角A,B,C对应的三条边分别为a、b、c,且a=f(0),b=f(-
π
6
),c=f(
π
3
),求
AB
AC
分析:(1)路向量共线的条件,建立方程,可求tanθ的值;
(2)计算出向量和的模,从而可求a,b,c的值,利用余弦定理求出cosA,再利用数量积公式,可得结论.
解答:解:(1)
a
b
a
=(sinθ,cosθ)、
b
=(
3
,1)
sinθ-
3
cosθ
=0…(3分)
∴tanθ=
3
…(6分)
(2)∵
a
+
b
=(sinθ+
3
,cosθ+1)…(7分)
∴f(θ)=|
a
+
b
|=
(sinθ+
3
)2+(cosθ+1)2
=
5+4sin(θ+
π
6
)2
…(8分)
∵a=f(0),b=f(-
π
6
),c=f(
π
3
),
∴a=f(0)=
7
,b=f(-
π
6
)=
5
,c=f(
π
3
)=3,…(10分)
由余弦定理可知:cosA=
b2+c2-a2
2bc
=
7
5
30
…(11分)
AB
AC
=|
AB
||
AC
|cosA=bccosA=
7
2
.…(12分)(其它方法酌情给分)
点评:本题考查向量知识的运用,考查三角函数的化简,考查余弦定理的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中,正确的是
①②③
①②③

①平面向量
a
b
的夹角为60°,
a
=(2,0),|
b
|=1,则|
a
+
b
|=
7

②已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)其中θ∈(π,
2
)则
a
b

③O是△ABC所在平面上一定点,动点P满足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
),λ∈(0,+∞),则直线AP一定通过△ABC的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinα,cos2α),
b
=(2sinα-1,1),α∈(
π
2
,π),若
a
b
=
2
5
,则tan(α+
π
4
)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα+sinα,cosα)
b
=(m,sinα)
,(α∈(
π
12
,π],m∈R

(1)求函数f(α)=
a
b
解析式
(2)求函数y=f(α)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆三模)已知
a
=(sinωx,-cosωx),
b
=(sinωx,
3
sinωx)(ω>0),若函数f(x)=
a
b
的最小正周期为
π
2

(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案