精英家教网 > 高中数学 > 题目详情

【题目】已知函数 的最大值是0,函数

(Ⅰ)求实数的值;

(Ⅱ)若当时,不等式恒成立,求实数的取值范围.

【答案】(Ⅰ);(Ⅱ)

【解析】

(Ⅰ)求出函数的导函数,根据函数的单调性求出f(x)的最大值,得到关于m的方程,进而求出m的值;

(Ⅱ)构造函数F(x)=f(x)-g(x),求出函数的导函数,进而求出的导函数,利用导数与函数单调性的关系,通过讨论a的范围,得到函数的单调区间,结合函数恒成立问题,进而求出a的取值范围.

(Ⅰ)函数的定义域为

,

因为,所以上单调递减.

,得

时,单调递增;

时,单调递减;

所以,当时,=

于是,,得 ,

易知,函数处有唯一零点,所以

(Ⅱ)令

,

,

①当时,上单调递减,

时,上单调递减,

故当时,,与已知矛盾.

②当时,

时,上单调递减,

时,

上单调递减,

则当时,,与已知矛盾.

③当时,上单调递增,

时,

所以上单调递增,故当时,恒成立.

综上,实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个经销鲜花产品的微店,为保障售出的百合花品质,每天从云南鲜花基地空运固定数量的百合花,如有剩余则免费分赠给第二天购花顾客,如果不足,则从本地鲜花供应商处进货.今年四月前10天,微店百合花的售价为每支2元,云南空运来的百合花每支进价1.6元,本地供应商处百合花每支进价1.8元,微店这10天的订单中百合花的需求量(单位:支)依次为:251,255,231,243,263,241,265,255,244,252.

(Ⅰ)求今年四月前10天订单中百合花需求量的平均数和众数,并完成频率分布直方图;

(Ⅱ)预计四月的后20天,订单中百合花需求量的频率分布与四月前10天相同,百合花进货价格与售价均不变,请根据(Ⅰ)中频率分布直方图判断(同一组中的需求量数据用该组区间的中点值作代表,位于各区间的频率代替位于该区间的概率),微店每天从云南固定空运250支,还是255支百合花,四月后20天百合花销售总利润会更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设曲线(a为正常数)与x轴上方仅有一个公共点P.

(1)求实数m的取值范围(用a表示);

(2)O为原点,若x轴的负半轴交于点A,当时,试求OAP的面积的最大值(用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在古装电视剧《知否》中,甲乙两人进行一种投壶比赛,比赛投中得分情况分有初”“贯耳”“散射”“双耳”“依竿五种,其中有初两筹贯耳四筹散射五筹双耳六筹依竿十筹,三场比赛得筹数最多者获胜.假设甲投中有初的概率为,投中贯耳的概率为,投中散射的概率为,投中双耳的概率为,投中依竿的概率为,乙的投掷水平与甲相同,且甲乙投掷相互独立.比赛第一场,两人平局;第二场,甲投了个贯耳,乙投了个双耳,则三场比赛结束时,甲获胜的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201912月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019COVID19),简称“新冠肺炎”.下图是2020115日至124日累计确诊人数随时间变化的散点图.

为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据115日至124日的数据(时间变量t的值依次12,…,10)建立模型.

1)根据散点图判断,哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)

2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;

3)以下是125日至129日累计确诊人数的真实数据,根据(2)的结果回答下列问题:

时间

125

126

127

128

129

累计确诊人数的真实数据

1975

2744

4515

5974

7111

(ⅰ)当125日至127日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?

(ⅱ)2020124日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?

附:对于一组数据(,……,,其回归直线的斜率和截距的最小二乘估计分别为.

参考数据:其中.

5.5

390

19

385

7640

31525

154700

100

150

225

338

507

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为

(1)求椭圆的标准方程;

(2)若椭圆的左焦点为,过点的直线与椭圆交于两点,则在轴上是否存在一个定点使得直线的斜率互为相反数?若存在,求出定点的坐标;若不存在,也请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究公司为了调查公众对某事件的关注程度,在某年的连续6个月内,月份和关注人数(单位:百)()数据做了初步处理,得到下面的散点图及一些统计量的值.

17.5

35

36.5

1)由散点图看出,可用线性回归模型拟合yx的关系,请用相关系数加以说明,并建立y关于x的回归方程;

2)经统计,调查材料费用v(单位:百元)与调查人数满足函数关系,求材料费用的最小值,并预测此时的调查人数;

3)现从这6个月中,随机抽取3个月份,求关注人数不低于1600人的月份个数分布列与数学期望.

参考公式:相关系数,若,则yx的线性相关程度相当高,可用线性回归模型拟合yx的关系.回归方程中斜率与截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足,且

(1)求证:数列是等差数列,并求出数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,在处的切线方程为.

(1)求

(2)若,证明: .

【答案】(1) ;(2)见解析

【解析】试题分析:1)求出函数的导数,得到关于 的方程组,解出即可;

(2)由(1)可知

,可得,令, 利用导数研究其单调性可得

从而证明.

试题解析:((1)由题意,所以

,所以

,则,与矛盾,故 .

(2)由(1)可知

,可得

时, 单调递减,且

时, 单调递增;且

所以上当单调递减,在上单调递增,且

.

【点睛本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.

型】解答
束】
22

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

查看答案和解析>>

同步练习册答案