精英家教网 > 高中数学 > 题目详情
已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=3
3
,c=2,B=150°,求边b和△ABC的面积.
分析:利用余弦定理求出b,利用△ABC的面积S△ABC=
1
2
acsinB
求出△ABC的面积.
解答:解:在△ABC中,由余弦定理得b2=a2+c2-2accosB=(3
3
)2+22-2×2
3
×2×cos150°
=49
∴b=7…(6分)
∴△ABC的面积S△ABC=
1
2
acsinB
…(9分)
=
1
2
×3
3
×2×sin150°
=
3
2
3
…(12分)
点评:本题考查余弦定理的运用,考查三角形面积的计算,正确运用余弦定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC三个内角A、B、C的对边.
(1)若b2=ac,求角B的范围.
(2)若acosA=bcosB,试判断△ABC的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,A+C=2B,则sinC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若
cosB
cosC
=-
b
2a+c
,则B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC中角A,B,C的对边,且sin2A+sin2C-sin2B=sinAsinC.
 (1)求角B的大小;
 (2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C的对边,且满足2asinB-
3
b=0.
(Ⅰ)求角A的大小;
(Ⅱ)当A为锐角时,求函数y=
3
sinB+sin(C-
π
6
)的最大值.

查看答案和解析>>

同步练习册答案