精英家教网 > 高中数学 > 题目详情
11.某中学有6名爱好篮球的高三男生,现在考察他们的投篮水平与打球年限的关系,每人罚篮10次,其打球年限与投中球数如下表:$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$
(Ⅰ)求投中球数y关于打球年限x(x∈N,0≤x≤16)的线性回归方程,
(Ⅱ)若第6名同学的打球年限为11年,试估计他的投中球数(精确到整数).
学生编号12345
打球年限x/年35679
投中球数y/个23345

分析 (Ⅰ) 设所求的线性回归方程为$\stackrel{∧}{y}$=bx+a,计算$\overline{x}$、$\overline{y}$,求出回归系数,写出线性回归方程;
(Ⅱ)利用回归方程计算x=11时$\stackrel{∧}{y}$的值即可.

解答 解:(Ⅰ) 设所求的线性回归方程为$\stackrel{∧}{y}$=bx+a,
则$\overline{x}$=$\frac{1}{5}$×(3+5+6+7+9)=6,
$\overline{y}$=$\frac{1}{5}$×(2+3+3+4+5)=3.4,
计算回归系数b=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x}){(y}_{i}-\overline{y})}{{\sum_{i=1}^{n}{(x}_{i}-\overline{x})}^{2}}$=$\frac{10}{20}$=0.5,
a=$\overline{y}$-b$\overline{x}$=0.4;
所以投中球数y关于打球年限x的线性回归方程为
$\stackrel{∧}{y}$=0.5x+0.4(其中x∈N,且0≤x≤16);(8分)
(Ⅱ)当x=11时,$\stackrel{∧}{y}$=0.5x+0.4=0.5×11+0.4=5.9≈6,
可以估计第6名同学投中球数为6个.(12分)

点评 本题考查了回归直线方程的求法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知实数a<0,函数$f(x)=\left\{\begin{array}{l}{x^2}+2a,\;x<1\\-x,x≥1\end{array}\right.$,若f(1-a)≥f(1+a),则实数a的取值范围是(  )
A.(-∞,-2]B.[-2,-1]C.[-1,0)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列不等式正确的是(  )
A.a3>a2(a>0,且a≠1)B.0.30.8>0.30.7C.π-1>e-1D.log34>log43

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)在x=1处存在导数,则$\lim_{△x→0}\frac{f(1+△x)-f(1)}{3△x}$=(  )
A.$\frac{1}{3}f'(1)$B.3f'(1)C.f'(1)D.f'(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$y={log_{\frac{1}{3}}}(-{x^2}+2x+8)$的值域为[-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若关于x的不等式x2+36+|x3-6x2|≥ax在[2,10]上恒成立,则a的取值范围是(-∞,12].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)=x3+2x-a在区间(1,2)内存在唯一一个零点,则实数a的取值范围为(3,12).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(-3,4),求$\overrightarrow a$+$\overrightarrow b$,$\overrightarrow a$-$\overrightarrow b$,3$\overrightarrow a$+4$\overrightarrow b$的坐标.
(2)已知单位向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夹角为60°,$\overrightarrow a$=$\overrightarrow{e_1}$+$\overrightarrow{e_2}$,$\overrightarrow b$=$\overrightarrow{e_2}$-2$\overrightarrow{e_1}$,求$\overrightarrow a•\overrightarrow b$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U=R,集合A={x|x2-x<0,x∈R},B={0,1},则(  )
A.A∪B=AB.A∩B=BC.UB=AD.B⊆∁UA

查看答案和解析>>

同步练习册答案